ICCV 2023 | RPL:自动驾驶中道路异常检测的新思路

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

本文只做学术分享,如有侵权,联系删文

Residual Pattern Learning: 在不影响模型闭集表现的情况下分割异常物体

Out-of-Distribution (OoD) Segmentation 是在原有的闭集分割器的基础上, 让模型进一步拥有识别异常物体的能力。现在的SOTA的方法都是基于重新fine-tuning/retraining整个闭集Segmentation网络, 这样会导致对原本inlier object的性能下降。同时, 大多数OoD的办法很难对多个不同的环境进行很好的拟合, 导致识别异常物体的性能在不同的场景会落差很大。

在这里和大家分享一波我们ICCV 2023中稿的工作 "Residual Pattern Learning for Pixel-wise Out-of-Distribution Detection in Semantic Segmentation". 在本次工作中, 我们针对当前OoD Segmentation中的两个问题进行了优化, 并且用consistent checkpoint 在所有数据集上取得了非常好的性能。        

54273d7c47d8b1ddf6d10b55ca44aca1.png

文章地址: https://arxiv.org/abs/2211.14512

代码地址:https://github.com/yyliu01/RPL

训练细节:https://wandb.ai/yy/RPL?workspace=user-pyedog1976

背景:

语义分割模型用于将像素级别的sample分类到 In Distribution (ID) 类别中。然而,当在开放世界中部署时,这些模型的可靠性不仅取决于其对ID像素的分类能力,还取决于其对Out-of-Distribution (OoD) 像素的检测能力。比如在autonomous driving的任务中, 路上出现一些障碍物 (OoD object, 比如说`路障`) 的时候, 传统的闭集semantic segmentation并不能很好的检测出这些物体。因为原本的segmentation 模型在训练的时候并没有定义这些种类, 导致这类物体会被判定成head categories (e.g., road), 会对驾驶造成潜在的危险。

OoD Segmentation方向概述:

81b705d467166f3e190d69cb11354801.png

1). 锁网络:最straight forward的方法就是直接通过softmax 或者 energy的结果来把segmentation输出的mask里面潜在的low confidence pixel判断成OoD。这种方法的好处是不会影响ID的segmentation性能, 并且不需要训练网络, 但是在遇到复杂的inlier或者outlier的时候, 性能会下降的很明显, 如上图 (a) 所示。

2). 重新训练:最近的办法主要是通过Outlier Exposure (OE) 将一个不相干的OoD数据集加入到ID数据集, 然后fine-tune已经训练好的close-set segmentation模型。在这个fine-tuning过程中, 利用新加入的OoD object来强行增加原本segmentation模型对异常的敏感度, 使得其OoD分割的性能得到了非常大的提升。但是这类方法的重新训练会导致原本ID类别的分割的性能受到不可逆的干扰, 如图 (b) 所示。

由这两点为motivation, 我们想要在保留原本inlier的分类性能的情况下, 得到一个稳定有效的OoD 分割器, 如图 (c)。

方法:

503241846011188b871655fed2929b7d.png

1). Residual Pattern Block (RPL):

与以往直接fine-tuning/retraining 分割网络不同, 我们在在原本的网络上外接了一个轻便的RPL block (frpl),然后原本的segmentation模型会全程锁住。基本思路是, frpl block对ID的pixel不做任何影响, 但是对潜在的OoD pixel做一个扰动, 让对应的confidence大幅下降, 进而通过最终map里的energy来判别是不是异常。

在训练过程中, 我们先用原本的网络生成 y_tilde (ID pseudo label):

       858d5ef2e5ef674cbef2a891ee5df503.png

然后用RPL扰动后的原本网络的结果:

72768c87af65250442c40ef154ccc5a3.png

对ID的pixel, 我们用cross-entropy来做penalty, 保证原本对OE的OoD object, 我们用下面的Energy cost function来约束他的能量

     a574344acaea2c55f785cf0ff53f1ee7.png

在训练的过程中, RPL不会导致原本segmentation模型的性能受到影响, 并且能高效的分割出潜在的OoD pixel。

2). Context-Robust Contrastive Learning (CoroCL):

目前所有OoD Segmentation在不同场景下的表现都不稳定, 比如大多数分割器在城市场景下能够很好的检测到物体, 但是在以下乡村的环境 (context) 下就会直接失效。

e383cf939a3a34c6d12c62e0e8cd69d0.png

为了应对这个问题, 增强网络对多个context的鲁棒性, 我们引用了supervised contrastive learning。我们在RPL的基础上多加了一层projection layer, 并且随机提取四种样本, 分别是

1). ID 场景里的 inlier pixel, 2). ID 场景里的OoD pixel,           75c95bd12952d7729a69337714502f18.png 和

3). OoD 场景里的inlier pixiel 4). OoD 场景里的OoD Pixel         2b42c041e0caf30387f472bfeb6cb6c0.png

我们通过InfoNCE来将不同场景的Inlier pixel聚合到一起, 并且推远OoD pixel       142b7fa7c550431fc1434cf2babac999.png

实验:

1). Test Results (wandb visualisation:https://wandb.ai/yy/RPL?workspace=user-pyedog1976)     

638f4b53cc2a46590c2a7aa5de234a0a.png

我们的结果在多个benchmark上获得了最稳定的结果, 超过了之前的SOTA超过10个点的FPR和20个点的AuPRC。

2). Ablation Study

4d70cf26394eca04a79c29d7af178c75.png

在消融实验里, 我们可以先比较了用entropy和energy用来当loss的结果, 然后比较了使用RPL和直接使用一个binary OoD 检测器 (最后一行), RPL与Energy带来了稳定的提升。然而RPL在不同的context也有之前OoD segmentation的通病: 在FS-Static\L&F这种city环境下效果很好, 但是在其他的benchmark比如Anomaly&RoadAnomaly表现却很差 (25.65 & 17.74), CoroCL很好的缓解了这个问题。

2.1). Ablation of RPL

122b71c82a04d34525ae35e8cea57666.png

在上图, 我们比较了原本close-set 分割模型的 mIoU [39] 和 其他re-training based OoD ([3], [9] and [31]) 在close-set的表现。我们的方法和freeze model 的方法 [13] 在ID数据集没有改变, 但是我们的方法有更好的识别OoD pixel的性能 (如section 1.) 所示)。


d131dd82b6512610f8fd5fd0ce8cf0b4.png

同时如上表, 我们RPL block可以对其他的OoD的方法在所有benchmark带来进一步的提升。

2.2). Ablation of CoroCL

5801a612ecfa2a8c8f059430a488bdb2.png

我们在对anchor set 和 contrastive set的选择上, 测试了不同的组合。在最后我们发现当使用Anchor set为Inlier与OE, Contrastive set为全部种类时效果最好。在这种组合下, InfoNCE只会将         5fd5bfb548e38d843791caaebf6a1c47.png互相拉近, 推远          5cfdb56ad424cec3eb57f8a33dc4ddbb.png , 但不会把两种OoD          9dc3d9ad1922ea0b760561c3cc190b1d.png拉近。

3). The Learned RPL Feature

785d21bdcafd14120ec2b69f64d70ae8.png

我们用self-attention

torch.einsum(’abc,bca->bc’,r, r.permute(1,2,0))

来可视化RPL的输出学到的OoD pattern (r)。在上图可以看到, RPL对潜在的OoD object会输出扰动, 而ID的pixel会拟合0输出。

3). Final Visualisation

52a8c9916123f45b090d942a57e32e33.png

* 颜色越偏红 代表异常可能性越高

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。


下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。


下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。


交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值