一文全览 | 知识蒸馏算法汇总

作者 | AI浩  编辑 | 小书童

原文链接:https://zhuanlan.zhihu.com/p/583273832

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

知识蒸馏有两大类:一类是「logits蒸馏」,另一类是「特征蒸馏」

「logits蒸馏」指的是在softmax时使用较高的温度系数,提升负标签的信息,然后使用Student和Teacher在高温softmax下logits的KL散度作为loss。

「中间特征蒸馏」就是强迫Student去学习Teacher某些中间层的特征,直接匹配中间的特征或学习特征之间的转换关系。例如,在特征No.1和No.2中间,知识可以表示为如何模做两者中间的转化,可以用一个矩阵让学习者产生这个矩阵,学习者和转化之间的学习关系。

这篇文章汇总了常用的知识蒸馏的论文和代码,方便后续的学习和研究。

1、Logits

论文链接:https://proceedings.neurips.cc/paper/2014/file/ea8fcd92d59581717e06eb187f10666d-Paper.pdf

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


class Logits(nn.Module):
 '''
 Do Deep Nets Really Need to be Deep?
 http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
 '''
 def __init__(self):
  super(Logits, self).__init__()

 def forward(self, out_s, out_t):
  loss = F.mse_loss(out_s, out_t)

  return loss

2、ST

论文链接:https://arxiv.org/pdf/1503.02531.pdf

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


class SoftTarget(nn.Module):
 '''
 Distilling the Knowledge in a Neural Network
 https://arxiv.org/pdf/1503.02531.pdf
 '''
 def __init__(self, T):
  super(SoftTarget, self).__init__()
  self.T = T

 def forward(self, out_s, out_t):
  loss = F.kl_div(F.log_softmax(out_s/self.T, dim=1),
      F.softmax(out_t/self.T, dim=1),
      reduction='batchmean') * self.T * self.T

  return loss

3、AT

论文链接:https://arxiv.org/pdf/1612.03928.pdf

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


'''
AT with sum of absolute values with power p
'''
class AT(nn.Module):
 '''
 Paying More Attention to Attention: Improving the Performance of Convolutional
 Neural Netkworks wia Attention Transfer
 https://arxiv.org/pdf/1612.03928.pdf
 '''
 def __init__(self, p):
  super(AT, self).__init__()
  self.p = p

 def forward(self, fm_s, fm_t):
  loss = F.mse_loss(self.attention_map(fm_s), self.attention_map(fm_t))

  return loss

 def attention_map(self, fm, eps=1e-6):
  am = torch.pow(torch.abs(fm), self.p)
  am = torch.sum(am, dim=1, keepdim=True)
  norm = torch.norm(am, dim=(2,3), keepdim=True)
  am = torch.div(am, norm+eps)

  return am

4、Fitnet

论文链接:https://arxiv.org/pdf/1412.6550.pdf

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


class Hint(nn.Module):
 '''
 FitNets: Hints for Thin Deep Nets
 https://arxiv.org/pdf/1412.6550.pdf
 '''
 def __init__(self):
  super(Hint, self).__init__()

 def forward(self, fm_s, fm_t):
  loss = F.mse_loss(fm_s, fm_t)

  return loss

5、NST

论文链接:https://arxiv.org/pdf/1707.0121

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


'''
NST with Polynomial Kernel, where d=2 and c=0
'''
class NST(nn.Module):
 '''
 Like What You Like: Knowledge Distill via Neuron Selectivity Transfer
 https://arxiv.org/pdf/1707.01219.pdf
 '''
 def __init__(self):
  super(NST, self).__init__()

 def forward(self, fm_s, fm_t):
  fm_s = fm_s.view(fm_s.size(0), fm_s.size(1), -1)
  fm_s = F.normalize(fm_s, dim=2)

  fm_t = fm_t.view(fm_t.size(0), fm_t.size(1), -1)
  fm_t = F.normalize(fm_t, dim=2)

  loss = self.poly_kernel(fm_t, fm_t).mean() \
    + self.poly_kernel(fm_s, fm_s).mean() \
    - 2 * self.poly_kernel(fm_s, fm_t).mean()

  return loss

 def poly_kernel(self, fm1, fm2):
  fm1 = fm1.unsqueeze(1)
  fm2 = fm2.unsqueeze(2)
  out = (fm1 * fm2).sum(-1).pow(2)

  return out

6、PKT

论文链接:http://openaccess.thecvf.com/content_ECCV_2018/papers/Nikolaos_Passalis_Learning_Deep_Representations_ECCV_2018_paper.pdf

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


'''
Adopted from https://github.com/passalis/probabilistic_kt/blob/master/nn/pkt.py
'''
class PKTCosSim(nn.Module):
 '''
 Learning Deep Representations with Probabilistic Knowledge Transfer
 http://openaccess.thecvf.com/content_ECCV_2018/papers/Nikolaos_Passalis_Learning_Deep_Representations_ECCV_2018_paper.pdf
 '''
 def __init__(self):
  super(PKTCosSim, self).__init__()

 def forward(self, feat_s, feat_t, eps=1e-6):
  # Normalize each vector by its norm
  feat_s_norm = torch.sqrt(torch.sum(feat_s ** 2, dim=1, keepdim=True))
  feat_s = feat_s / (feat_s_norm + eps)
  feat_s[feat_s != feat_s] = 0

  feat_t_norm = torch.sqrt(torch.sum(feat_t ** 2, dim=1, keepdim=True))
  feat_t = feat_t / (feat_t_norm + eps)
  feat_t[feat_t != feat_t] = 0

  # Calculate the cosine similarity
  feat_s_cos_sim = torch.mm(feat_s, feat_s.transpose(0, 1))
  feat_t_cos_sim = torch.mm(feat_t, feat_t.transpose(0, 1))

  # Scale cosine similarity to [0,1]
  feat_s_cos_sim = (feat_s_cos_sim + 1.0) / 2.0
  feat_t_cos_sim = (feat_t_cos_sim + 1.0) / 2.0

  # Transform them into probabilities
  feat_s_cond_prob = feat_s_cos_sim / torch.sum(feat_s_cos_sim, dim=1, keepdim=True)
  feat_t_cond_prob = feat_t_cos_sim / torch.sum(feat_t_cos_sim, dim=1, keepdim=True)

  # Calculate the KL-divergence
  loss = torch.mean(feat_t_cond_prob * torch.log((feat_t_cond_prob + eps) / (feat_s_cond_prob + eps)))

  return loss

7、FSP

论文链接:http://openaccess.thecvf.com/content_cvpr_2017/papers/Yim_A_Gift_From_CVPR_2017_paper.pdf

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


class FSP(nn.Module):
 '''
 A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learning
 http://openaccess.thecvf.com/content_cvpr_2017/papers/Yim_A_Gift_From_CVPR_2017_paper.pdf
 '''
 def __init__(self):
  super(FSP, self).__init__()

 def forward(self, fm_s1, fm_s2, fm_t1, fm_t2):
  loss = F.mse_loss(self.fsp_matrix(fm_s1,fm_s2), self.fsp_matrix(fm_t1,fm_t2))

  return loss

 def fsp_matrix(self, fm1, fm2):
  if fm1.size(2) > fm2.size(2):
   fm1 = F.adaptive_avg_pool2d(fm1, (fm2.size(2), fm2.size(3)))

  fm1 = fm1.view(fm1.size(0), fm1.size(1), -1)
  fm2 = fm2.view(fm2.size(0), fm2.size(1), -1).transpose(1,2)

  fsp = torch.bmm(fm1, fm2) / fm1.size(2)

  return fsp

8、FT

论文链接:http://papers.nips.cc/paper/7541-paraphrasing-complex-network-network-compression-via-factor-transfer.pdf

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


class FT(nn.Module):
 '''
 araphrasing Complex Network: Network Compression via Factor Transfer
 http://papers.nips.cc/paper/7541-paraphrasing-complex-network-network-compression-via-factor-transfer.pdf
 '''
 def __init__(self):
  super(FT, self).__init__()

 def forward(self, factor_s, factor_t):
  loss = F.l1_loss(self.normalize(factor_s), self.normalize(factor_t))

  return loss

 def normalize(self, factor):
  norm_factor = F.normalize(factor.view(factor.size(0),-1))

  return norm_factor

9、RKD

论文链接:https://arxiv.org/pdf/1904.05068.pdf

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


'''
From https://github.com/lenscloth/RKD/blob/master/metric/loss.py
'''
class RKD(nn.Module):
 '''
 Relational Knowledge Distillation
 https://arxiv.org/pdf/1904.05068.pdf
 '''
 def __init__(self, w_dist, w_angle):
  super(RKD, self).__init__()

  self.w_dist  = w_dist
  self.w_angle = w_angle

 def forward(self, feat_s, feat_t):
  loss = self.w_dist * self.rkd_dist(feat_s, feat_t) + \
      self.w_angle * self.rkd_angle(feat_s, feat_t)

  return loss

 def rkd_dist(self, feat_s, feat_t):
  feat_t_dist = self.pdist(feat_t, squared=False)
  mean_feat_t_dist = feat_t_dist[feat_t_dist>0].mean()
  feat_t_dist = feat_t_dist / mean_feat_t_dist

  feat_s_dist = self.pdist(feat_s, squared=False)
  mean_feat_s_dist = feat_s_dist[feat_s_dist>0].mean()
  feat_s_dist = feat_s_dist / mean_feat_s_dist

  loss = F.smooth_l1_loss(feat_s_dist, feat_t_dist)

  return loss

 def rkd_angle(self, feat_s, feat_t):
  # N x C --> N x N x C
  feat_t_vd = (feat_t.unsqueeze(0) - feat_t.unsqueeze(1))
  norm_feat_t_vd = F.normalize(feat_t_vd, p=2, dim=2)
  feat_t_angle = torch.bmm(norm_feat_t_vd, norm_feat_t_vd.transpose(1, 2)).view(-1)

  feat_s_vd = (feat_s.unsqueeze(0) - feat_s.unsqueeze(1))
  norm_feat_s_vd = F.normalize(feat_s_vd, p=2, dim=2)
  feat_s_angle = torch.bmm(norm_feat_s_vd, norm_feat_s_vd.transpose(1, 2)).view(-1)

  loss = F.smooth_l1_loss(feat_s_angle, feat_t_angle)

  return loss

 def pdist(self, feat, squared=False, eps=1e-12):
  feat_square = feat.pow(2).sum(dim=1)
  feat_prod   = torch.mm(feat, feat.t())
  feat_dist   = (feat_square.unsqueeze(0) + feat_square.unsqueeze(1) - 2 * feat_prod).clamp(min=eps)

  if not squared:
   feat_dist = feat_dist.sqrt()

  feat_dist = feat_dist.clone()
  feat_dist[range(len(feat)), range(len(feat))] = 0

  return feat_dist

10、AB

论文链接:https://arxiv.org/pdf/1811.03233.pdf

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


class AB(nn.Module):
 '''
 Knowledge Transfer via Distillation of Activation Boundaries Formed by Hidden Neurons
 https://arxiv.org/pdf/1811.03233.pdf
 '''
 def __init__(self, margin):
  super(AB, self).__init__()

  self.margin = margin

 def forward(self, fm_s, fm_t):
  # fm befor activation
  loss = ((fm_s + self.margin).pow(2) * ((fm_s > -self.margin) & (fm_t <= 0)).float() +
       (fm_s - self.margin).pow(2) * ((fm_s <= self.margin) & (fm_t > 0)).float())
  loss = loss.mean()

  return loss

11、SP

论文链接:https://arxiv.org/pdf/1907.09682.pdf

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


class SP(nn.Module):
 '''
 Similarity-Preserving Knowledge Distillation
 https://arxiv.org/pdf/1907.09682.pdf
 '''
 def __init__(self):
  super(SP, self).__init__()

 def forward(self, fm_s, fm_t):
  fm_s = fm_s.view(fm_s.size(0), -1)
  G_s  = torch.mm(fm_s, fm_s.t())
  norm_G_s = F.normalize(G_s, p=2, dim=1)

  fm_t = fm_t.view(fm_t.size(0), -1)
  G_t  = torch.mm(fm_t, fm_t.t())
  norm_G_t = F.normalize(G_t, p=2, dim=1)

  loss = F.mse_loss(norm_G_s, norm_G_t)

  return loss

12、Sobolev

论文链接:https://arxiv.org/pdf/1706.04859.pdf

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import grad


class Sobolev(nn.Module):
 '''
 Sobolev Training for Neural Networks
 https://arxiv.org/pdf/1706.04859.pdf

 Knowledge Transfer with Jacobian Matching
 http://de.arxiv.org/pdf/1803.00443
 '''
 def __init__(self):
  super(Sobolev, self).__init__()

 def forward(self, out_s, out_t, img, target):
  target_out_s = torch.gather(out_s, 1, target.view(-1, 1))
  grad_s       = grad(outputs=target_out_s, inputs=img,
       grad_outputs=torch.ones_like(target_out_s),
       create_graph=True, retain_graph=True, only_inputs=True)[0]
  norm_grad_s  = F.normalize(grad_s.view(grad_s.size(0), -1), p=2, dim=1)

  target_out_t = torch.gather(out_t, 1, target.view(-1, 1))
  grad_t       = grad(outputs=target_out_t, inputs=img,
       grad_outputs=torch.ones_like(target_out_t),
       create_graph=True, retain_graph=True, only_inputs=True)[0]
  norm_grad_t  = F.normalize(grad_t.view(grad_t.size(0), -1), p=2, dim=1)

  loss = F.mse_loss(norm_grad_s, norm_grad_t.detach())

  return loss

13、BSS

论文链接:https://arxiv.org/pdf/1805.05532.pdf

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd.gradcheck import zero_gradients
'''
Modified by https://github.com/bhheo/BSS_distillation
'''

def reduce_sum(x, keepdim=True):
 for d in reversed(range(1, x.dim())):
  x = x.sum(d, keepdim=keepdim)
 return x


def l2_norm(x, keepdim=True):
 norm = reduce_sum(x*x, keepdim=keepdim)
 return norm.sqrt()


class BSS(nn.Module):
 '''
 Knowledge Distillation with Adversarial Samples Supporting Decision Boundary
 https://arxiv.org/pdf/1805.05532.pdf
 '''
 def __init__(self, T):
  super(BSS, self).__init__()
  self.T = T

 def forward(self, attacked_out_s, attacked_out_t):
  loss = F.kl_div(F.log_softmax(attacked_out_s/self.T, dim=1),
      F.softmax(attacked_out_t/self.T, dim=1),
      reduction='batchmean') #* self.T * self.T

  return loss


class BSSAttacker():
 def __init__(self, step_alpha, num_steps, eps=1e-4):
  self.step_alpha = step_alpha
  self.num_steps = num_steps
  self.eps = eps

 def attack(self, model, img, target, attack_class):
  img = img.detach().requires_grad_(True)

  step = 0
  while step < self.num_steps:
   zero_gradients(img)
   _, _, _, _, _, output = model(img)

   score = F.softmax(output, dim=1)
   score_target = score.gather(1, target.unsqueeze(1))
   score_attack_class = score.gather(1, attack_class.unsqueeze(1))

   loss = (score_attack_class - score_target).sum()
   loss.backward()

   step_alpha = self.step_alpha * (target == output.max(1)[1]).float()
   step_alpha = step_alpha.unsqueeze(1).unsqueeze(1).unsqueeze(1)
   if step_alpha.sum() == 0:
    break

   pert = (score_target - score_attack_class).unsqueeze(1).unsqueeze(1)
   norm_pert = step_alpha * (pert + self.eps) * img.grad / l2_norm(img.grad)

   step_adv = img + norm_pert
   step_adv = torch.clamp(step_adv, -2.5, 2.5)
   img.data = step_adv.data

   step += 1

  return img

14、CC

论文链接:http://openaccess.thecvf.com/content_ICCV_2019/papers/Peng_Correlation_Congruence_for_Knowledge_Distillation_ICCV_2019_paper.pdf

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import math


'''
CC with P-order Taylor Expansion of Gaussian RBF kernel
'''
class CC(nn.Module):
 '''
 Correlation Congruence for Knowledge Distillation
 http://openaccess.thecvf.com/content_ICCV_2019/papers/
 Peng_Correlation_Congruence_for_Knowledge_Distillation_ICCV_2019_paper.pdf
 '''
 def __init__(self, gamma, P_order):
  super(CC, self).__init__()
  self.gamma = gamma
  self.P_order = P_order

 def forward(self, feat_s, feat_t):
  corr_mat_s = self.get_correlation_matrix(feat_s)
  corr_mat_t = self.get_correlation_matrix(feat_t)

  loss = F.mse_loss(corr_mat_s, corr_mat_t)

  return loss

 def get_correlation_matrix(self, feat):
  feat = F.normalize(feat, p=2, dim=-1)
  sim_mat  = torch.matmul(feat, feat.t())
  corr_mat = torch.zeros_like(sim_mat)

  for p in range(self.P_order+1):
   corr_mat += math.exp(-2*self.gamma) * (2*self.gamma)**p / \
      math.factorial(p) * torch.pow(sim_mat, p)

  return corr_mat

15、LwM

论文链接:https://arxiv.org/pdf/1811.08051.pdf

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import grad

'''
LwM is originally an incremental learning method with 
classification/distillation/attention distillation losses.

Here, LwM is only defined as the Grad-CAM based attention distillation.
'''
class LwM(nn.Module):
 '''
 Learning without Memorizing
 https://arxiv.org/pdf/1811.08051.pdf
 '''
 def __init__(self):
  super(LwM, self).__init__()

 def forward(self, out_s, fm_s, out_t, fm_t, target):
  target_out_t = torch.gather(out_t, 1, target.view(-1, 1))
  grad_fm_t    = grad(outputs=target_out_t, inputs=fm_t,
       grad_outputs=torch.ones_like(target_out_t),
       create_graph=True, retain_graph=True, only_inputs=True)[0]
  weights_t = F.adaptive_avg_pool2d(grad_fm_t, 1)
  cam_t = torch.sum(torch.mul(weights_t, grad_fm_t), dim=1, keepdim=True)
  cam_t = F.relu(cam_t)
  cam_t = cam_t.view(cam_t.size(0), -1)
  norm_cam_t = F.normalize(cam_t, p=2, dim=1)

  target_out_s = torch.gather(out_s, 1, target.view(-1, 1))
  grad_fm_s    = grad(outputs=target_out_s, inputs=fm_s,
       grad_outputs=torch.ones_like(target_out_s),
       create_graph=True, retain_graph=True, only_inputs=True)[0]
  weights_s = F.adaptive_avg_pool2d(grad_fm_s, 1)
  cam_s = torch.sum(torch.mul(weights_s, grad_fm_s), dim=1, keepdim=True)
  cam_s = F.relu(cam_s)
  cam_s = cam_s.view(cam_s.size(0), -1)
  norm_cam_s = F.normalize(cam_s, p=2, dim=1)

  loss = F.l1_loss(norm_cam_s, norm_cam_t.detach())

  return loss

16、IRG

论文链接:http://openaccess.thecvf.com/content_CVPR_2019/papers/Liu_Knowledge_Distillation_via_Instance_Relationship_Graph_CVPR_2019_paper.pdf

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


class IRG(nn.Module):
 '''
 Knowledge Distillation via Instance Relationship Graph
 http://openaccess.thecvf.com/content_CVPR_2019/papers/
 Liu_Knowledge_Distillation_via_Instance_Relationship_Graph_CVPR_2019_paper.pdf

 The official code is written by Caffe
 https://github.com/yufanLIU/IRG
 '''
 def __init__(self, w_irg_vert, w_irg_edge, w_irg_tran):
  super(IRG, self).__init__()

  self.w_irg_vert = w_irg_vert
  self.w_irg_edge = w_irg_edge
  self.w_irg_tran = w_irg_tran

 def forward(self, irg_s, irg_t):
  fm_s1, fm_s2, feat_s, out_s = irg_s
  fm_t1, fm_t2, feat_t, out_t = irg_t

  loss_irg_vert = F.mse_loss(out_s, out_t)

  irg_edge_feat_s = self.euclidean_dist_feat(feat_s, squared=True)
  irg_edge_feat_t = self.euclidean_dist_feat(feat_t, squared=True)
  irg_edge_fm_s1  = self.euclidean_dist_fm(fm_s1, squared=True)
  irg_edge_fm_t1  = self.euclidean_dist_fm(fm_t1, squared=True)
  irg_edge_fm_s2  = self.euclidean_dist_fm(fm_s2, squared=True)
  irg_edge_fm_t2  = self.euclidean_dist_fm(fm_t2, squared=True)
  loss_irg_edge = (F.mse_loss(irg_edge_feat_s, irg_edge_feat_t) +
       F.mse_loss(irg_edge_fm_s1,  irg_edge_fm_t1 ) +
       F.mse_loss(irg_edge_fm_s2,  irg_edge_fm_t2 )) / 3.0

  irg_tran_s = self.euclidean_dist_fms(fm_s1, fm_s2, squared=True)
  irg_tran_t = self.euclidean_dist_fms(fm_t1, fm_t2, squared=True)
  loss_irg_tran = F.mse_loss(irg_tran_s, irg_tran_t)

  # print(self.w_irg_vert * loss_irg_vert)
  # print(self.w_irg_edge * loss_irg_edge)
  # print(self.w_irg_tran * loss_irg_tran)
  # print()

  loss = (self.w_irg_vert * loss_irg_vert +
    self.w_irg_edge * loss_irg_edge +
    self.w_irg_tran * loss_irg_tran)

  return loss

 def euclidean_dist_fms(self, fm1, fm2, squared=False, eps=1e-12):
  '''
  Calculating the IRG Transformation, where fm1 precedes fm2 in the network.
  '''
  if fm1.size(2) > fm2.size(2):
   fm1 = F.adaptive_avg_pool2d(fm1, (fm2.size(2), fm2.size(3)))
  if fm1.size(1) < fm2.size(1):
   fm2 = (fm2[:,0::2,:,:] + fm2[:,1::2,:,:]) / 2.0

  fm1 = fm1.view(fm1.size(0), -1)
  fm2 = fm2.view(fm2.size(0), -1)
  fms_dist = torch.sum(torch.pow(fm1-fm2, 2), dim=-1).clamp(min=eps)

  if not squared:
   fms_dist = fms_dist.sqrt()

  fms_dist = fms_dist / fms_dist.max()

  return fms_dist

 def euclidean_dist_fm(self, fm, squared=False, eps=1e-12): 
  '''
  Calculating the IRG edge of feature map. 
  '''
  fm = fm.view(fm.size(0), -1)
  fm_square = fm.pow(2).sum(dim=1)
  fm_prod   = torch.mm(fm, fm.t())
  fm_dist   = (fm_square.unsqueeze(0) + fm_square.unsqueeze(1) - 2 * fm_prod).clamp(min=eps)

  if not squared:
   fm_dist = fm_dist.sqrt()

  fm_dist = fm_dist.clone()
  fm_dist[range(len(fm)), range(len(fm))] = 0
  fm_dist = fm_dist / fm_dist.max()

  return fm_dist

 def euclidean_dist_feat(self, feat, squared=False, eps=1e-12):
  '''
  Calculating the IRG edge of feat.
  '''
  feat_square = feat.pow(2).sum(dim=1)
  feat_prod   = torch.mm(feat, feat.t())
  feat_dist   = (feat_square.unsqueeze(0) + feat_square.unsqueeze(1) - 2 * feat_prod).clamp(min=eps)

  if not squared:
   feat_dist = feat_dist.sqrt()

  feat_dist = feat_dist.clone()
  feat_dist[range(len(feat)), range(len(feat))] = 0
  feat_dist = feat_dist / feat_dist.max()

  return feat_dist

17、VID

论文链接:https://openaccess.thecvf.com/content_CVPR_2019/papers/Ahn_Variational_Information_Distillation_for_Knowledge_Transfer_CVPR_2019_paper.pdf

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np


def conv1x1(in_channels, out_channels):
 return nn.Conv2d(in_channels, out_channels,
      kernel_size=1, stride=1,
      padding=0, bias=False)

'''
Modified from https://github.com/HobbitLong/RepDistiller/blob/master/distiller_zoo/VID.py
'''
class VID(nn.Module):
 '''
 Variational Information Distillation for Knowledge Transfer
 https://zpascal.net/cvpr2019/Ahn_Variational_Information_Distillation_for_Knowledge_Transfer_CVPR_2019_paper.pdf
 '''
 def __init__(self, in_channels, mid_channels, out_channels, init_var, eps=1e-6):
  super(VID, self).__init__()
  self.eps = eps
  self.regressor = nn.Sequential(*[
    conv1x1(in_channels, mid_channels),
    # nn.BatchNorm2d(mid_channels),
    nn.ReLU(),
    conv1x1(mid_channels, mid_channels),
    # nn.BatchNorm2d(mid_channels),
    nn.ReLU(),
    conv1x1(mid_channels, out_channels),
   ])
  self.alpha = nn.Parameter(
    np.log(np.exp(init_var-eps)-1.0) * torch.ones(out_channels)
   )

  for m in self.modules():
   if isinstance(m, nn.Conv2d):
    nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
    if m.bias is not None:
     nn.init.constant_(m.bias, 0)
   # elif isinstance(m, nn.BatchNorm2d):
   #  nn.init.constant_(m.weight, 1)
   #  nn.init.constant_(m.bias, 0)

 def forward(self, fm_s, fm_t):
  pred_mean = self.regressor(fm_s)
  pred_var  = torch.log(1.0+torch.exp(self.alpha)) + self.eps
  pred_var  = pred_var.view(1, -1, 1, 1)
  neg_log_prob = 0.5 * (torch.log(pred_var) + (pred_mean-fm_t)**2 / pred_var)
  loss = torch.mean(neg_log_prob)

  return loss

18、OFD

论文链接:http://openaccess.thecvf.com/content_ICCV_2019/papers/Heo_A_Comprehensive_Overhaul_of_Feature_Distillation_ICCV_2019_paper.pdf

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np


'''
Modified from https://github.com/clovaai/overhaul-distillation/blob/master/CIFAR-100/distiller.py
'''
class OFD(nn.Module):
 '''
 A Comprehensive Overhaul of Feature Distillation
 http://openaccess.thecvf.com/content_ICCV_2019/papers/
 Heo_A_Comprehensive_Overhaul_of_Feature_Distillation_ICCV_2019_paper.pdf
 '''
 def __init__(self, in_channels, out_channels):
  super(OFD, self).__init__()
  self.connector = nn.Sequential(*[
    nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
    nn.BatchNorm2d(out_channels)
   ])

  for m in self.modules():
   if isinstance(m, nn.Conv2d):
    nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
    if m.bias is not None:
     nn.init.constant_(m.bias, 0)
   elif isinstance(m, nn.BatchNorm2d):
    nn.init.constant_(m.weight, 1)
    nn.init.constant_(m.bias, 0)

 def forward(self, fm_s, fm_t):
  margin = self.get_margin(fm_t)
  fm_t = torch.max(fm_t, margin)
  fm_s = self.connector(fm_s)

  mask = 1.0 - ((fm_s <= fm_t) & (fm_t <= 0.0)).float()
  loss = torch.mean((fm_s - fm_t)**2 * mask)

  return loss

 def get_margin(self, fm, eps=1e-6):
  mask = (fm < 0.0).float()
  masked_fm = fm * mask

  margin = masked_fm.sum(dim=(0,2,3), keepdim=True) / (mask.sum(dim=(0,2,3), keepdim=True)+eps)

  return margin

19、AFD

论文链接:https://openreview.net/pdf?id=ryxyCeHtPB

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import math

'''
In the original paper, AFD is one of components of AFDS.
AFDS: Attention Feature Distillation and Selection
AFD:  Attention Feature Distillation
AFS:  Attention Feature Selection

We find the original implementation of attention is unstable, thus we replace it with a SE block.
'''
class AFD(nn.Module):
 '''
 Pay Attention to Features, Transfer Learn Faster CNNs
 https://openreview.net/pdf?id=ryxyCeHtPB
 '''
 def __init__(self, in_channels, att_f):
  super(AFD, self).__init__()
  mid_channels = int(in_channels * att_f)

  self.attention = nn.Sequential(*[
    nn.Conv2d(in_channels, mid_channels, 1, 1, 0, bias=True),
    nn.ReLU(inplace=True),
    nn.Conv2d(mid_channels, in_channels, 1, 1, 0, bias=True)
   ])

  for m in self.modules():
   if isinstance(m, nn.Conv2d):
    nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
    if m.bias is not None:
     nn.init.constant_(m.bias, 0)
  
 def forward(self, fm_s, fm_t, eps=1e-6):
  fm_t_pooled = F.adaptive_avg_pool2d(fm_t, 1)
  rho = self.attention(fm_t_pooled)
  # rho = F.softmax(rho.squeeze(), dim=-1)
  rho = torch.sigmoid(rho.squeeze())
  rho = rho / torch.sum(rho, dim=1, keepdim=True)

  fm_s_norm = torch.norm(fm_s, dim=(2,3), keepdim=True)
  fm_s      = torch.div(fm_s, fm_s_norm+eps)
  fm_t_norm = torch.norm(fm_t, dim=(2,3), keepdim=True)
  fm_t      = torch.div(fm_t, fm_t_norm+eps)

  loss = rho * torch.pow(fm_s-fm_t, 2).mean(dim=(2,3))
  loss = loss.sum(1).mean(0)

  return loss

20、CRD

论文链接:https://openreview.net/pdf?id=SkgpBJrtvS

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import math


'''
Modified from https://github.com/HobbitLong/RepDistiller/tree/master/crd
'''
class CRD(nn.Module):
 '''
 Contrastive Representation Distillation
 https://openreview.net/pdf?id=SkgpBJrtvS

 includes two symmetric parts:
 (a) using teacher as anchor, choose positive and negatives over the student side
 (b) using student as anchor, choose positive and negatives over the teacher side

 Args:
  s_dim: the dimension of student's feature
  t_dim: the dimension of teacher's feature
  feat_dim: the dimension of the projection space
  nce_n: number of negatives paired with each positive
  nce_t: the temperature
  nce_mom: the momentum for updating the memory buffer
  n_data: the number of samples in the training set, which is the M in Eq.(19)
 '''
 def __init__(self, s_dim, t_dim, feat_dim, nce_n, nce_t, nce_mom, n_data):
  super(CRD, self).__init__()
  self.embed_s = Embed(s_dim, feat_dim)
  self.embed_t = Embed(t_dim, feat_dim)
  self.contrast = ContrastMemory(feat_dim, n_data, nce_n, nce_t, nce_mom)
  self.criterion_s = ContrastLoss(n_data)
  self.criterion_t = ContrastLoss(n_data)

 def forward(self, feat_s, feat_t, idx, sample_idx):
  feat_s = self.embed_s(feat_s)
  feat_t = self.embed_t(feat_t)
  out_s, out_t = self.contrast(feat_s, feat_t, idx, sample_idx)
  loss_s = self.criterion_s(out_s)
  loss_t = self.criterion_t(out_t)
  loss = loss_s + loss_t

  return loss


class Embed(nn.Module):
 def __init__(self, in_dim, out_dim):
  super(Embed, self).__init__()
  self.linear = nn.Linear(in_dim, out_dim)

 def forward(self, x):
  x = x.view(x.size(0), -1)
  x = self.linear(x)
  x = F.normalize(x, p=2, dim=1)

  return x


class ContrastLoss(nn.Module):
 '''
 contrastive loss, corresponding to Eq.(18)
 '''
 def __init__(self, n_data, eps=1e-7):
  super(ContrastLoss, self).__init__()
  self.n_data = n_data
  self.eps = eps

 def forward(self, x):
  bs = x.size(0)
  N  = x.size(1) - 1
  M  = float(self.n_data)

  # loss for positive pair
  pos_pair = x.select(1, 0)
  log_pos  = torch.div(pos_pair, pos_pair.add(N / M + self.eps)).log_()

  # loss for negative pair
  neg_pair = x.narrow(1, 1, N)
  log_neg  = torch.div(neg_pair.clone().fill_(N / M), neg_pair.add(N / M + self.eps)).log_()

  loss = -(log_pos.sum() + log_neg.sum()) / bs

  return loss


class ContrastMemory(nn.Module):
 def __init__(self, feat_dim, n_data, nce_n, nce_t, nce_mom):
  super(ContrastMemory, self).__init__()
  self.N = nce_n
  self.T = nce_t
  self.momentum = nce_mom
  self.Z_t = None
  self.Z_s = None

  stdv = 1. / math.sqrt(feat_dim / 3.)
  self.register_buffer('memory_t', torch.rand(n_data, feat_dim).mul_(2 * stdv).add_(-stdv))
  self.register_buffer('memory_s', torch.rand(n_data, feat_dim).mul_(2 * stdv).add_(-stdv))

 def forward(self, feat_s, feat_t, idx, sample_idx):
  bs = feat_s.size(0)
  feat_dim = self.memory_s.size(1)
  n_data = self.memory_s.size(0)

  # using teacher as anchor
  weight_s = torch.index_select(self.memory_s, 0, sample_idx.view(-1)).detach()
  weight_s = weight_s.view(bs, self.N + 1, feat_dim)
  out_t = torch.bmm(weight_s, feat_t.view(bs, feat_dim, 1))
  out_t = torch.exp(torch.div(out_t, self.T)).squeeze().contiguous()

  # using student as anchor
  weight_t = torch.index_select(self.memory_t, 0, sample_idx.view(-1)).detach()
  weight_t = weight_t.view(bs, self.N + 1, feat_dim)
  out_s = torch.bmm(weight_t, feat_s.view(bs, feat_dim, 1))
  out_s = torch.exp(torch.div(out_s, self.T)).squeeze().contiguous()

  # set Z if haven't been set yet
  if self.Z_t is None:
   self.Z_t = (out_t.mean() * n_data).detach().item()
  if self.Z_s is None:
   self.Z_s = (out_s.mean() * n_data).detach().item()

  out_t = torch.div(out_t, self.Z_t)
  out_s = torch.div(out_s, self.Z_s)

  # update memory
  with torch.no_grad():
   pos_mem_t = torch.index_select(self.memory_t, 0, idx.view(-1))
   pos_mem_t.mul_(self.momentum)
   pos_mem_t.add_(torch.mul(feat_t, 1 - self.momentum))
   pos_mem_t = F.normalize(pos_mem_t, p=2, dim=1)
   self.memory_t.index_copy_(0, idx, pos_mem_t)

   pos_mem_s = torch.index_select(self.memory_s, 0, idx.view(-1))
   pos_mem_s.mul_(self.momentum)
   pos_mem_s.add_(torch.mul(feat_s, 1 - self.momentum))
   pos_mem_s = F.normalize(pos_mem_s, p=2, dim=1)
   self.memory_s.index_copy_(0, idx, pos_mem_s)

  return out_s, out_t

21、DML

论文链接:https://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Deep_Mutual_Learning_CVPR_2018_paper.pdf

代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


'''
DML with only two networks
'''
class DML(nn.Module):
 '''
 Deep Mutual Learning
 https://zpascal.net/cvpr2018/Zhang_Deep_Mutual_Learning_CVPR_2018_paper.pdf
 '''
 def __init__(self):
  super(DML, self).__init__()

 def forward(self, out1, out2):
  loss = F.kl_div(F.log_softmax(out1, dim=1),
      F.softmax(out2, dim=1),
      reduction='batchmean')

  return loss
下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。


下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。


下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。


交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值