Parameter-Insensitive Min Cut Clustering With Flexible Size Constrains
具有灵活规模约束的参数不敏感最小割聚类
Feiping Nie; Fangyuan Xie; Weizhong Yu; Xuelong Li
摘要
聚类是机器学习中的一个基本主题,提出了各种方法,其中 K-Means (KM) 和最小割聚类是典型的。然而,它们可能会产生空的或倾斜的聚类结果,这并不符合预期。在 KM 中,约束聚类方法已经得到了充分研究,而在最小割聚类中,这一方面仍然需要发展。在本文中,我们提出了一种具有灵活规模约束的参数不敏感最小割聚类方法。具体来说,我们为每个聚类添加了样本数量的下限,这可以完美地避免最小割聚类中的平凡解。据我们所知,这是首次直接将规模约束引入最小割。然而,这是一个 NP 难问题,难以解决。因此,我们还增加了上限,但仍然难以解决。因此,我们引入了一个等价于标签矩阵的附加变量,并使用增广拉格朗日乘子(ALM)来解耦约束。在实验中,我们发现我们的方法对下限不太敏感,