TPAMI 2024 | 具有灵活规模约束的参数不敏感最小割聚类

Parameter-Insensitive Min Cut Clustering With Flexible Size Constrains

具有灵活规模约束的参数不敏感最小割聚类

Feiping Nie; Fangyuan Xie; Weizhong Yu; Xuelong Li


摘要

聚类是机器学习中的一个基本主题,提出了各种方法,其中 K-Means (KM) 和最小割聚类是典型的。然而,它们可能会产生空的或倾斜的聚类结果,这并不符合预期。在 KM 中,约束聚类方法已经得到了充分研究,而在最小割聚类中,这一方面仍然需要发展。在本文中,我们提出了一种具有灵活规模约束的参数不敏感最小割聚类方法。具体来说,我们为每个聚类添加了样本数量的下限,这可以完美地避免最小割聚类中的平凡解。据我们所知,这是首次直接将规模约束引入最小割。然而,这是一个 NP 难问题,难以解决。因此,我们还增加了上限,但仍然难以解决。因此,我们引入了一个等价于标签矩阵的附加变量,并使用增广拉格朗日乘子(ALM)来解耦约束。在实验中,我们发现我们的方法对下限不太敏感,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值