题目:[Fast Clustering With Anchor Guidance (https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10262202)
基于锚点引导的快速聚类
作者:Feiping Nie; Jingjing Xue; Weizhong Yu; Xuelong Li
摘要
聚类旨在通过对象的内在性质将一组对象划分为不同组。现有方法多因各种正则化术语而引发的超参数问题难以处理,这降低了模型的适用性。此外,传统的图聚类方法总是面临高昂的时间成本。为此,我们提出了一种基于锚点引导的快速聚类模型(FCAG)。所提出的模型不仅避免了无需额外正则化术语的琐碎解决方案,而且通过利用二分图的先验知识,适合处理大规模问题。此外,所提出的FCAG还可以处理样本外扩展问题。我们提出了三种优化方法:投影梯度下降(PGD)方法、迭代重加权(IRW)算法和坐标下降(CD)算法来解决FCAG。广泛的实验验证了优化方法CD的优越性。此外,与其他二分图模型相比&