论文信息
题目:Learning Graph Attentions via Replicator Dynamics
通过复制动态学习图注意力
作者:Bo Jiang; Ziyan Zhang; Sheng Ge; Beibei Wang; Xiao Wang; Jin Tang
论文创新点
- 图复制器注意力(GRA)模型:提出了一种新的基于复制器动态的图注意力学习模型——图复制器注意力(GRA),该模型能够通过自监督的方式显式学习上下文感知和保留稀疏性的图注意力系数。
- 结构信息的融合:GRA模型能够充分利用图边缘的结构信息,通过注意力信息在不同边缘间的扩散/传播,捕捉边缘的上下文信息,而不是仅依赖于边缘或节点的特征,从而提高了图神经网络(GNNs)的性能。
- 理论和效率的双重优势:GRA不仅在理论上可以从能量最小化框架得到解释,而且在实际