TPAMI 2024 | 通过复制动态学习图注意力

论文信息

题目:Learning Graph Attentions via Replicator Dynamics
通过复制动态学习图注意力
作者:Bo Jiang; Ziyan Zhang; Sheng Ge; Beibei Wang; Xiao Wang; Jin Tang

论文创新点

  1. 图复制器注意力(GRA)模型:提出了一种新的基于复制器动态的图注意力学习模型——图复制器注意力(GRA),该模型能够通过自监督的方式显式学习上下文感知和保留稀疏性的图注意力系数。
  2. 结构信息的融合:GRA模型能够充分利用图边缘的结构信息,通过注意力信息在不同边缘间的扩散/传播,捕捉边缘的上下文信息,而不是仅依赖于边缘或节点的特征,从而提高了图神经网络(GNNs)的性能。
  3. 理论和效率的双重优势:GRA不仅在理论上可以从能量最小化框架得到解释,而且在实际
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值