论文信息
题目:Test-time Training for Hyperspectral Image Super-resolution
超光谱图像超分辨率的测试时训练方法
作者:Ke Li; Luc Van Gool; Dengxin Dai
论文创新点
-
测试时训练方法:提出了一种新的测试时训练方法,通过自训练框架生成更准确的伪标签和LR-HR关系,使模型能够在测试期间进一步适应新数据,从而提高HSI SR的性能。
-
网络架构设计:设计了一种简单但有效的分组超分辨率网络,专注于空间图像超分辨率,而不需要建模光谱波段交互。这种设计不仅提高了标准HSI SR的性能,还特别适合测试时训练。
-
数据增强方法:提出了一种新的数据增强方法——光谱混合(Spectral Mixup),通过混合不同波段的内容生成新的光谱图像,增加训练数据的多样性,同时保留HSI的详细