TPAMI 2025 | 超光谱图像超分辨率的测试时训练方法

论文信息

题目:Test-time Training for Hyperspectral Image Super-resolution
超光谱图像超分辨率的测试时训练方法
作者:Ke Li; Luc Van Gool; Dengxin Dai

论文创新点

  1. 测试时训练方法:提出了一种新的测试时训练方法,通过自训练框架生成更准确的伪标签和LR-HR关系,使模型能够在测试期间进一步适应新数据,从而提高HSI SR的性能。

  2. 网络架构设计:设计了一种简单但有效的分组超分辨率网络,专注于空间图像超分辨率,而不需要建模光谱波段交互。这种设计不仅提高了标准HSI SR的性能,还特别适合测试时训练。

  3. 数据增强方法:提出了一种新的数据增强方法——光谱混合(Spectral Mixup),通过混合不同波段的内容生成新的光谱图像,增加训练数据的多样性,同时保留HSI的详细

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值