TMI 2024 | 基于概念的病变感知Transformer用于可解释的视网膜疾病诊断

论文信息

题目:Concept-based Lesion Aware Transformer for Interpretable Retinal Disease Diagnosis
基于概念的病变感知Transformer用于可解释的视网膜疾病诊断
作者:Chi Wen, Mang Ye, He Li, Ting Chen, Xuan Xiao
源码链接:https://github.com/Sorades/CLAT

论文创新点

  1. 将视网膜病变视为概念:本文提出了一种基于概念的框架,将视网膜病变视为概念,从而提升诊断模型的性能和可解释性。
  2. 利用Transformer架构:通过利用Transformer在捕捉长距离依赖关系方面的优势,模型能够更有效地识别病变特征。
  3. 图像级注释与视网膜基础模型对齐:通过
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值