TPAMI 2024 | 高保真和高效的多解图像补全方法:基于Transformer的研究

论文信息

题目:High-Fidelity and Efficient Pluralistic Image Completion With Transformers
高保真和高效的多解图像补全方法:基于Transformer的研究
作者:Ziyu Wan, Jingbo Zhang, Dongdong Chen, Jing Liao

论文创新点

  1. 结合Transformer和CNN的优势 使用Transformer进行多解外观先验重建,以恢复连贯的图像结构和粗略纹理。利用CNN进行局部纹理细化,在高分辨率掩膜图像的引导下增强粗略先验的局部纹理细节。

  2. 提出新的解码策略:温度退火概率采样(TAPS) 首次实现了超过70倍的推理加速,同时保持了采样全局结构的高质量和多样性。通过温度退火和分布替换机制,有效解决了传统置信度引

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值