论文信息
题目:High-Fidelity and Efficient Pluralistic Image Completion With Transformers
高保真和高效的多解图像补全方法:基于Transformer的研究
作者:Ziyu Wan, Jingbo Zhang, Dongdong Chen, Jing Liao
论文创新点
-
结合Transformer和CNN的优势 使用Transformer进行多解外观先验重建,以恢复连贯的图像结构和粗略纹理。利用CNN进行局部纹理细化,在高分辨率掩膜图像的引导下增强粗略先验的局部纹理细节。
-
提出新的解码策略:温度退火概率采样(TAPS) 首次实现了超过70倍的推理加速,同时保持了采样全局结构的高质量和多样性。通过温度退火和分布替换机制,有效解决了传统置信度引