【yolov4】模型框架图

yolov4
在这里插入图片描述

需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》,课程链接 https://edu.csdn.net/course/detail/29865【为什么要学习这门课】 Linux创始人Linus Torvalds有一句名言:Talk is cheap. Show me the code. 冗谈不够,放码过来!  代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。【课程内容与收获】 本课程将解析YOLOv4的实现原理和源码,具体内容包括:- YOLOv4目标检测原理- 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算- 代码阅读工具及方法- 深度学习计算的利器:BLAS和GEMM- GPU的CUDA编程方法及在darknet的应用- YOLOv4的程序流程- YOLOv4各层及关键技术的源码解析本课程将提供注释后的darknet的源码程序文件。【相关课程】 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括:《YOLOv4目标检测实战:训练自己的数据集》《YOLOv4-tiny目标检测实战:训练自己的数据集》《YOLOv4目标检测实战:人脸口罩佩戴检测》《YOLOv4目标检测实战:中国交通标志识别》建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。【YOLOv4网络模型架构图】 下图由白勇老师绘制  
### YOLOv7 模型框架结构图解析 #### 一、YOLOv7 基础架构概述 YOLOv7 的基础版本设计旨在平衡速度与精度,在常规 GPU 上运行良好。该模型采用了一种新的复合缩放方法,不仅增强了颈部性能还优化了整体的深度和宽度比例[^1]。 #### 二、扩展版 YOLOv7X 架构特点 基于标准 YOLOv7 进一步发展而来的是 YOLOv7X 版本,其主要改进体现在颈部部分进行了堆栈缩放处理,并应用上述提到的新复合缩放技术调整整个网络参数,使得模型更加高效强大。 #### 三、云端增强型号介绍 针对云计算环境下的高性能需求,推出了 yolov7-d6, yolov7-e6 和 yolov7-e6e 等变体。特别是后者引入了 E-ELAN 组件进一步提升了检测效果;而对于更广泛的场景,则有专门面向大尺寸输入图像优化过的 yolov7-w6 变形款。 #### 四、轻量化边缘计算适配方案 为了适应资源受限设备的需求,开发团队提供了两种小型化实现方式 —— yolov7-tiny 和 yolov7-tiny-silu 。两者区别仅在于激活函数的选择上有所不同:前者采用了 Leaky ReLU ,而后者则选用了 SiLU 函数以期达到更好的表现。 #### 五、预测结果编码机制说明 在最终输出阶段,YOLOv7 对目标框的位置信息采取特定形式进行编码表示,这有助于提高定位准确性并简化后续解码过程。 ```mermaid graph TD; A[YoloV7 Base Model] --> B{Neck Scaling}; B --> C(YoloV7-X); C --> D[Depth & Width Scaling]; A --> E(Cloud Models); E --> F(YoloV7-D6); E --> G(YoloV7-E6); G --> H(E-ELAN Integration -> YoloV7-E6E); E --> I(Wide Input Support -> YoloV7-W6); A --> J(Edge Devices); J --> K(Tiny Version with LeakyReLU); J --> L(SiLU Activated Tiny Variant); ``` 此图表展示了 YOLOv7 家族各成员之间的关系及其特色功能模块连接情况。通过这种方式可以直观理解不同版本间的主要差异以及各自适用的应用领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

computer_vision_chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值