恰当微分方程(Exact Differential Equation)是一类特殊的一阶微分方程,其形式为:
其中 和
是两个关于 x和 y的函数。恰当微分方程的特点是存在一个函数
,使得:
这意味着 和
分别是
对 x和 y 的偏导数,即:
为了验证一个微分方程是否恰当,我们需要检查以下条件是否满足:
那么我们平时求解恰当微分方程,其实是有一些困难的,那么本文就介绍一种较为简单的方法:
分项组合法:恰当方程的分项组合法是一种解决恰当微分方程的方法,它利用二元函数微分的特点,将恰当微分方程的各项“分项组合”凑成全微分形式。
1.证明:
首先,我们将一个二元函数,看作是分别包含
部分,
部分和
部分的和。
那么我们得到
我们对进行偏导,则得到,
我们将两个式子进行合并,就可以得到一个类似全微分的式子:
那么我们就可以理解为二元函数被全微分为了三个部分,
那么对于一般的,我们可以理解为函数
都是由只包含
的函数
和只包含
的函数
的乘积组成,我们将
进行全微分可以得到:
继续推导,
这想当于我们可以通过凑全微分的形式,将恰当方程进行简化,证毕。
2.使用
我们用一道经典例题进行诠释。
例题:求解齐型方程
分析:若是使用常规的变量替换法,过程较为繁琐,且后面还要进行积分,不免出错,这里我们使用凑全微分的分项组合法。
solution:
对于左式,我们进行变换:
随后交叉相乘,得到:
进行移项,得到:
观察到:
我们凑全微分可以得到:
最后即得:
分项组合法还是较为简单的,通过将微分方程的项组合成全微分,我们可以将其转化为寻找一个势函数的问题,这通常比直接解微分方程要简单,可以显著减少计算量,避免了复杂的积分技巧和数值方法。
但是这种方法要求熟记一些简单二元函数的全微分以方便我们进行凑全微分,比如: