2.3 恰当微分方程

恰当微分方程

  • M ( x , y ) d x + N ( x , y ) d y = d u ( x , y ) M(x,y)dx+N(x,y)dy=du(x,y) M(x,y)dx+N(x,y)dy=du(x,y) = ∂ u ∂ x d x + ∂ u ∂ y d y =\frac{\partial u}{\partial x}dx+\frac{\partial u}{\partial y}dy =xudx+yudy
  • M , N M,N M,N关于 x , y x,y x,y连续且可微(有连续一阶偏导)

判断恰当微分方程的充要条件

  • ∂ M ∂ y = ∂ N ∂ x \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} yM=xN

证充分:

  • 思路:若 M ( x , y ) d x + N ( x , y ) d y = 0 M(x,y)dx+N(x,y)dy=0 M(x,y)dx+N(x,y)dy=0满足以上条件,则能找到一个 u ( x , y ) u(x,y) u(x,y)使 ∂ u ∂ x = M , ∂ u ∂ y = N \frac{\partial u}{\partial x}=M,\frac{\partial u}{\partial y}=N xu=M,yu=N成立
    • ∂ u ∂ x = M \frac{\partial u}{\partial x}=M xu=M出发,得 u = ∫ M ( x , y ) d x + φ ( y ) u=\int M(x, y) \mathrm{d} x+\varphi(y) u=M(x,y)dx+φ(y)
    • 再对y求偏导: ∂ u ∂ y = ∂ ∂ y ∫ M ( x , y ) d x + d φ ( y ) d y = N \frac{\partial u}{\partial y}=\frac{\partial}{\partial y} \int M(x, y) \mathrm{d} x+\frac{\mathrm{d} \varphi(y)}{\mathrm{d} y}=N yu=yM(x,y)dx+dydφ(y)=N d φ ( y ) d y = N − ∂ ∂ y ∫ M ( x , y ) d x \frac{\mathrm{d} \varphi(y)}{\mathrm{d} y}=N-\frac{\partial}{\partial y} \int M(x, y) \mathrm{d} x dydφ(y)=NyM(x,y)dx所以只要证明右边的一堆和 x x x无关,就能说明真的存在一个 φ ( y ) \varphi(y) φ(y),那就真的存在一个满足条件的 u u u了!证明右边与x无关 ⇔ \Leftrightarrow 证明右边一堆对 x x x求偏导=0 ∂ ∂ x [ N − ∂ ∂ y ∫ M ( x , y ) d x ] = ∂ N ∂ x − ∂ ∂ x [ ∂ ∂ y ∫ M ( x , y ) d x ] = ∂ N ∂ x − ∂ ∂ y [ ∂ ∂ x ∫ M ( x , y ) d x ] = ∂ N ∂ x − ∂ M ∂ y = 0 \begin{aligned} \frac{\partial}{\partial x}\left[N-\frac{\partial}{\partial y} \int M(x, y) \mathrm{d} x\right] &=\frac{\partial N}{\partial x}-\frac{\partial}{\partial x}\left[\frac{\partial}{\partial y} \int M(x, y) \mathrm{d} x\right] \\ &=\frac{\partial N}{\partial x}-\frac{\partial}{\partial y}\left[\frac{\partial}{\partial x} \int M(x, y) \mathrm{d} x\right] \\ &=\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}=0 \end{aligned} x[NyM(x,y)dx]=xNx[yM(x,y)dx]=xNy[xM(x,y)dx]=xNyM=0
    • 证毕,且 φ ( y ) = ∫ [ N − ∂ ∂ y ∫ M ( x , y ) d x ] d y \varphi(y)=\int\Big[N-\frac{\partial}{\partial y} \int M(x, y) \mathrm{d} x\Big]dy φ(y)=[NyM(x,y)dx]dy
    • 因此求得 u = ∫ M ( x , y ) d x + ∫ [ N − ∂ ∂ y ∫ M ( x , y ) d x ] d y u=\int M(x,y)dx+\int\Big[N-\frac{\partial}{\partial y} \int M(x, y) \mathrm{d} x\Big]dy u=M(x,y)dx+[NyM(x,y)dx]dy恰当微分方程的通解为 u = c u=c u=c
    • 或者 u = ∫ N ( x , y ) d y + ∫ [ M − ∂ ∂ x ∫ N ( x , y ) d y ] d x u=\int N(x,y)dy+\int\Big[M-\frac{\partial}{\partial x} \int N(x, y) \mathrm{d} y\Big]dx u=N(x,y)dy+[MxN(x,y)dy]dx

求解恰当微分方程常见方法

常规方法

  • ①先判断是否为恰微 ∂ M ∂ y ? = ∂ N ∂ x \frac{\partial M}{\partial y}?=\frac{\partial N}{\partial x} yM?=xN
  • ②若是,计算 ∫ M ( x , y ) d x \int M(x,y)dx M(x,y)dx
  • ③再算: ∫ [ N − ∂ ∂ y ∫ M ( x , y ) d x ] d y \int\Big[N-\frac{\partial}{\partial y} \int M(x, y) \mathrm{d} x\Big]dy [NyM(x,y)dx]dy

分项组合

  • 把单独的 f ( x ) d x , ψ ( y ) d y f(x)dx,\psi(y)dy f(x)dx,ψ(y)dy单拎出来,剩下的 g ( x , y ) d x , h ( x , y ) d y g(x,y)dx,h(x,y)dy g(x,y)dx,h(x,y)dy放在一起看是否为某些特定函数的全微分,一般有
    • y d x + x d y = d ( x y ) y \mathrm{d} x+x \mathrm{d} y=\mathrm{d}(x y) ydx+xdy=d(xy)
    • y d x − x d y y 2 = d ( x y ) \frac{y \mathrm{d} x-x \mathrm{d} y}{y^{2}}=\mathrm{d}\left(\frac{x}{y}\right) y2ydxxdy=d(yx)
    • − y d x + x d y x 2 = d ( y x ) \frac{-y \mathrm{d} x+x \mathrm{d} y}{x^{2}}=\mathrm{d}\left(\frac{y}{x}\right) x2ydx+xdy=d(xy)
    • y d x − x d y x y = d ( ln ⁡ ∣ x y ∣ ) \frac{y \mathrm{d} x-x \mathrm{d} y}{x y}=\mathrm{d}\left(\ln \left|\frac{x}{y}\right|\right) xyydxxdy=d(lnyx)
    • y d x − x d y x 2 + y 2 = d ( arctan ⁡ x y ) \frac{y d x-x d y}{x^{2}+y^{2}}=d\left(\arctan \frac{x}{y}\right) x2+y2ydxxdy=d(arctanyx)
    • y d x − x d y x 2 − y 2 = 1 2 d ( ln ⁡ ∣ x − y x + y ∣ ) \frac{y d x-x d y}{x^{2}-y^{2}}=\frac{1}{2} d\left(\ln \left|\frac{x-y}{x+y}\right|\right) x2y2ydxxdy=21d(lnx+yxy)

积分因子

  • 积分因子的目的:将非恰微方程转化为恰微
  • 存在连续可微的 μ = μ ( x , y ) ≠ 0 \mu=\mu(x,y)\ne0 μ=μ(x,y)=0使得 μ ( x , y ) M ( x , y ) d x + μ ( x , y ) N ( x , y ) d y = 0 \mu(x,y)M(x,y)dx+\mu(x,y)N(x,y)dy=0 μ(x,y)M(x,y)dx+μ(x,y)N(x,y)dy=0变成恰微,此时称 μ ( x , y ) \mu(x,y) μ(x,y)为方程 M ( x , y ) d x + N ( x , y ) d y = 0 M(x,y)dx+N(x,y)dy=0 M(x,y)dx+N(x,y)dy=0积分因子
  • 即存在函数 v v v,使得 μ M d x + μ N d y ≡ d v = 0 \mu Mdx+\mu Ndy\equiv dv=0 μMdx+μNdydv=0此时 v ( x , y ) = c v(x,y)=c v(x,y)=c是原方程的通解
  • 注意:①不同方程有不同积分因子,因此最后的通解形式会不一样;②只要方程有解,必有积分因子

成为积分因子的充要条件

  • ∂ ( μ M ) ∂ y = ∂ ( μ N ) ∂ x \frac{\partial (\mu M)}{\partial y}=\frac{\partial (\mu N)}{\partial x} y(μM)=x(μN) N ∂ μ ∂ x − M ∂ μ ∂ y = ( ∂ M ∂ y − ∂ N ∂ x ) μ N \frac{\partial \mu}{\partial x}-M \frac{\partial \mu}{\partial y}=\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \mu NxμMyμ=(yMxN)μ

求积分因子

通常先看是否存在只与 x 或 y x或y xy有关的积分因子
结论:

  • 方程有只与 x x x有关的积分因子的充要: ∂ M ∂ y − ∂ N ∂ x N = ψ ( x ) \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=\psi(x) NyMxN=ψ(x)
  • 只与 y y y有关的充要: ∂ M ∂ y − ∂ N ∂ x − M = φ ( y ) \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{-M}=\varphi(y) MyMxN=φ(y)

证明:
这不就直接让 ∂ μ ∂ x \frac{\partial \mu}{\partial x} xμ ∂ μ ∂ y = 0 \frac{\partial \mu}{\partial y}=0 yμ=0就得了

  • 4
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

universe_1207

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值