摘 要:生命特征信号探测旨在对人体信号中含有呼吸、心跳等特征参数进行检测和提取,是监测人体生 命健康的重要方法之一,在信号处理、医学工程等领域均有广泛的应用。本文对基于毫米波雷达的生命特征信 号探测技术进行系统综述,从提取信号的角度出发,综述了将毫米波雷达技术引入生命特征信号探测领域之后 的研究成果。首先,从毫米波雷达体制方面对现存雷达技术进行了论述。然后,简要介绍了对称三角波调制方 法对生命信号进行检测,考虑到将检测到的生命信号进行特征分离,总结了三种弱信号提取算法并进行对比,重 点分析了小波变换和经验模态分解两种方法的研究现状。最后,本文分析了毫米波雷达在生命信号探测领域存 在的问题,并对今后可能的研究趋势进行了展望。
关键词:毫米波雷达;生命信号;对称三角波调制;小波变换;经验模态分解
0 引 言
近年来,随着生活水平的提高和技术发展,生 命特征信号探测技术成为检测领域的焦点之一; 人体心肺活动检测的技术也在由接触式向非接触 式发展。常见的非接触式检测有红外[1] 、可见光[2] 和声波探测技术[3] ;由于人体呼吸等生命活动产生 的位移幅度小,速度缓慢,探测回波信号是一种与 零频接近的低频信号,容易受到周围环境的影响。 与其他探测技术相比,雷达技术以独特的优势被 广泛应用于生命信号检测领域,该技术克服了呼吸监测时产生的皮肤损伤、过敏等问题,受外界因 素的影响也较小,在未来有更广阔的发展空间。 现有成果表明,利用毫米波雷达来检测胸腔微小 变化,是行之有效的方法,该方法已经成为生物医 学工程领域的重要研究方向。
国内外学者在该领 域的研究主要集中于雷达体制、检测方法和生命 特征信号提取技术三个方面。 1 毫米波生物雷达体制研究进展 目前,在生命信号检测领域常用的毫米波雷 达技术有连续波(CW)与调频连续波(FMCW)两种,这两种雷达技术的对比如表1所示。连续波雷 达和调频连续波雷达系统的集成水平较高且功耗 低,适合用于近距离的信号探测。CW雷达适合跟 踪相对位移,因此适用于单人检测,而调频连续波 雷达可应用于多人检测,且相比CW而言有更高的 分辨率。使用毫米波雷达检测人体生命信号的原 理如图1所示。
1986 年 Chen 等[4] 采用 10 GHz 雷达,通过杂波 抵消技术,滤除部分杂波后检测到呼吸与心跳信 号。2001年王健琪等[5] 提出用低功率的毫米波雷 达提取呼吸与心跳信号,这种方法对人体无害但 是所提取的信号中有杂波干扰,精度较低。2005 年杨冬等[6] 引入同态滤波、小波分析、窄带数字滤 波等技术,提高了检测信号的信噪比,利于呼吸与 心跳信号的检测。2009 年 Anitori 等[7] 研究通过中 频信号来检测人体心肺活动信号。2014 年 Wang 等[8] 提出了一种基于相位的精确距离跟踪算法,在 中心频率为 5.8 GHz FMCW 雷达系统中提取到人 体的心肺活动信号。
2018年王天润等[9] 提出了高 频段的 FMCW 毫米波雷达测量生命体征的方法, 解决了在低频段精度较低的问题。刘震宇等[10] 提 出了一种基于改进经验模态分解的雷达生命信号 检测方法,能够有效地滤除信号中的噪声,提取到 高信噪比的心肺活动信号。2019 年 Lee 等[11] 利用 24 GHz毫米波雷达检测到人体心跳信号,尽管考虑 了消除周围杂波的干扰,但是没有注意到由人体本 身产生的轻微运动对信号检测带来的误差影响。 2020 年 Antolinos 等[12]通过改进商用 122 GHz FM⁃ CW雷达实现生命信号提取,不仅可以提取呼吸与 心跳,而且可以检测出心率变异情况,但是该系统 的精度仍受到身体移动的影响,因此使用毫米波雷 达准确检测出人体生命信号需要更进一步研究。 本文其余内容组织如下:为获得有效的生命 信号,第2节将介绍毫米波雷达进行生命信号检测 的方法以及检测原理。由于检测到的雷达回波信 号是由呼吸、心跳等生命特征信号以及各种杂波混合在一起的复杂信号,在第3节详细介绍了三种 有关生命特征信号的提取方法。最后在第 4 节提 出毫米波雷达对于生命特征信号探测技术存在的 问题,并展望未来毫米波雷达的发展趋势。
2 生命信号检测方法
为了检测到生命信号,毫米波雷达前端发射 调频信号,该线性调频信号被物体反射后由接收 机接收,根据发射信号与接收信号之间的频率差 与时间差,从而得到被测物体的距离变化。对称 三角波调制是一种常见的信号检测方法,王月 鹏[24] 分析了对称三角波雷达组成,并通过差拍频 率频谱配对,能够在多目标中准确检测待测目标 信号,得到通过三角波调制后的距离、速度情况。 一般情况下都是对静止物体进行信号检测,为了 解决探测运动物体信号,田正刚[25]设计了一种 24 GHz 的雷达传感器,利用三角波调制对静止物 体进行测距,如图2所示,对运动物体进行测速,如 图3所示。并成功检测到物体的距离与速度信息,为信号检测提供了思路。采用对称三角波调制 时,接收到的信号容易产生多次谐波干扰,若检测 多目标容易造成谐波重叠。为了解决这一问题, Cheng 等[26] 提出了采用阵列信号处理的天线阵列 接收机,解决了多目标检测问题,提高了信噪比。
2 中,ft为发射信号频率,fr为接收信号频 率,△f为发射信号的最大频偏,f0为发射信号的初 始频率,τ 为回波延迟时间,fb为发射信号与接收 信号之间的差拍频率绝对值,Tm为扫频周期,fbav为 差拍频率的平均值。图 3 中,fd为多普勒频率,fb+ 为向上扫频的差频,fb-为向下扫频的差频。
扫频带宽以减小距离分辨率。 根据图 3 计算目标速度,假设目标距离为 R, 径向相对速度为 v,一个扫频周期的前半周期向上 扫频范围与后半周期向下扫频范围可表示为
3 生命特征信号提取技术
通常由雷达回波信号检测到的是人体呼吸、 心跳等生命特征信号以及周围环境杂波混合在一 起的复合信号,因此生命特征提取的方法主要是 用于去除杂波与噪声干扰,并准确分离、提取出呼 吸与心跳信号。
3.1 数字滤波法
数字滤波是传统的生命特征提取方法,由于 可以通过带通滤波器分离不同频率的信号,且具 有操作过程简单、性能稳定等特点,所以数字滤波 被应用于生命信号检测领域。虽然利用数字滤波 能够去除部分噪声,但是很难分离呼吸与心跳信 号以及无法滤除信号与噪声混叠部分的噪声,因 此使用数字滤波提取生命特征有很大的缺陷。罗 兵等[27] 通过采用低通巴特沃斯数字滤波器提取到 呼吸信号,但检测到的呼吸与心跳信号并不明显, 可以考虑采用FMCW 雷达系统提高分辨率。丁仲 祥等[28] 在数字滤波基础上进行改进,用低通数字 滤波滤除高频噪声,得到的呼吸、心跳信号通过特 征点检测,然后利用逐点比较法检测出呼吸信号 的极大值,从而得到呼吸信号的频率。 由于数字滤波方法的缺点较为明显,无法有 效滤除杂波,因此在生命信号提取过程中只能先 滤除部分噪声干扰,再结合其他方法滤除剩余噪 声,分离呼吸与心跳信号。
3.2 小波变换法
小波变换是短时傅里叶变换的改进,提供一 种“时间⁃频率”的信号处理方法,具有多分辨率的 特性,所以被应用于生命特征提取中。为解决数 字滤波无法滤除噪声问题,陆云飞[29] 、易慧[30] 等通 过小波变换,在低信噪比下检测到了弱目标信号 检测。小波变换能更有效地提取出目标信号,且 实时性强,应用性更广泛。为了解决谐波干扰问 题,蒋腾等[31] 提出了一种基于连续小波变换的心 率提取方法,根据谱峰位置与数据长短的关系,最 终快速、有效、准确地提取到了生命信号。为解决 被测对象微动带来的影响,杨秀芳等[32] 建立生命信号探测模型,对检测到的数据利用小波变换成 功地提取到了人体呼吸信号和心跳信号。刘璐瑶 等[33] 采用小波包分解,利用自相关计算提高精度, 成功提取到精度较高的呼吸与心跳信号。该方法 的提取结果如图4所示。
虽然小波信号有很大优势,但也存在对信噪 比低的信号去噪效果较差的缺点,为解决这一问 题,魏崇毓等[34] 先采用频域积累法将检测信号的 信噪比提高,再利用小波变换去除噪声和杂波,从 而产生了一种新的生命特征提取方法。为提高提 取准确率,Wang等[35] 提出了一种基于正交匹配追 踪的压缩感知算法和基于离散小波变换的自适应 软阈值降噪算法来分离和重构呼吸和心跳信号, 该算法能有效抑制噪声和谐波干扰,呼吸率和心 跳率的准确率均达到93%左右。
小波变换法是生命特征提取的一个基本思 路,在生命特征提取方面有很多优点,可以对生命 信号进行时频分析,提取到生命特征信号的变化, 将呼吸和心跳信号分离。其难点在于小波基函数 的选择,需要满足小波基函数的条件,才可以应用 于小波分析中。
3.3 经验模态分解法
经验模态分解法是一种适用于非平稳、非线 性信号的自适应处理方法[36] ,使非平稳信号能够 平稳化,然后得到频谱图及有效的频率。这种方 法可以让较为复杂的信号分解为数量有限的本征 模函数(IMF),每个本征模函数包含的信号表现了 原信号在不同时间尺度中的局部特征。生命信号 是一种微弱的信号,极容易受到外界噪声的干扰, 且是一种随机的非平稳信号,因此在复杂信号中 提取生命信号,再准确地将呼吸与心跳信号分离 有很大难度。传统的方法无法准确处理随机非平 稳信号,且在提取心跳信号时容易受到呼吸信号微弱谐波的影响,导致提取的信号不精确。
为解 决这一问题,冯久超等[37] 提出了一种基于经验模 态分解的生命信号提取的新方法,实验结果表明, 使用这种方法能避免呼吸信号谐波对心跳信号的 干扰,因而能更加精确地提取呼吸和心跳参数。 为了降低外界干扰并提高生命体征检测的准确 度,陈辉等[38] 提出了一种联合集合经验模态分解 算法,经过算法改进,用于精确检测人体的心率与 呼吸频率等生命体征。在消除人体抖动干扰方 面,杨俊等[39] 利用改进的快速互补集合经验模态 分解对生命信号分解,准确地提取出不同呼吸状 态下的呼吸频率和心跳频率,并且有效地消除人 体身体随机抖动带来的干扰,该方法的提取结果 如图5所示。
在医疗检测领域,心肺活动参数的准确度尤 为重要,为了能够将心率与呼吸率的准确度提高, 胡巍[40] 提出了一种基于连续小波变换和经验模态 分解相结合的方法,来对检测到的生命信号进行 心跳与呼吸信息提取,以及心率、呼吸速率、心率 变异性参数估计研究。实验表明,虽然检测到的 信号受到的外界干扰较多,但该方法测定心率、呼 吸速率的准确度可接近 100%。医疗检测领域探 测生命信号的主要目的之一是能够检测出人体生 理疾病,以便尽早治疗。为了分辨出健康信号与 病变信号,Zhang等[41] 通过经验模态分解方法提取人体脉搏信号,利用模态能量比区分出健康心跳 信号与病变心跳信号。
Djelaila[42] 等提出一种用经 验模态分解和功率谱密度计算频率分析等自适应 非平稳方法,利用这种方法来分析生命信号频率 的变异性。将经验模态分解法应用于生命信号提 取中,为及时检测出早期心律失常等生理疾病提 供有效的方法。 通过将生命信号分解为有限个IMF,将不同时 间尺度的生命特征进行提取。但是因此也会导致 模态混叠现象发生,可采取加入白噪声法,能有效 抑制混叠现象,提高分解效率。目前,经验模态分 解已成为提取生命特征信号的重要方法之一。
4 展 望
虽然毫米波雷达在生命信号检测领域取得了 一定进展,但仍有很多发展空间,今后的研究方向 有以下几个方面:
1)被检测者身体抖动问题。目前,通过毫米 波雷达检测人体生命信号都会选择一个相对安静 的环境,使被测者平躺或者静坐进行检测,主要目 的是防止身体抖动。因为在检测过程中被检测者 可能会因为紧张,或者大腿、手臂等发生不自主地 抖动,而人体的轻微抖动产生的信号比呼吸心跳 信号要强烈很多,会将胸腔距离变化掩盖,雷达天 线之间的角度与相对位移也将发生改变,导致检 测结果有很大误差。因此,未来该领域的研究工 作需要考虑提升毫米波雷达对生命信号传感与跟 踪,避免由于身体抖动造成的误差问题。
2)环境噪声问题。由于呼吸信号与心跳信号 均属于微弱信号,极容易受到环境噪声的影响,在 有干扰存在的情况下进行呼吸和心跳信号的提取 是研究毫米波雷达探测生命信号的一大难点。除 此之外,由于呼吸信号的幅度大于心跳信号的幅 度,所以在提取心跳信号时会受到呼吸信号的二 次谐波或者三次谐波干扰,提取难度更大。 3)其他杂波干扰问题。虽然通过小波变换、 经验模态分解等信号提取方法,能够有效地在检 测信号中提取出精度较高的呼吸、心跳信号。考 虑到在信号检测过程中,被检测者的身形、身体素 质以及所处的环境不同,或者同一被测者在不同
距离、不同身体状况下产生的生命信号的杂波也 各不相同。因此,需要一种实时有效、更加精密的 提取生命特征的方法,克服环境噪声以及各种杂 波干扰,能够准确分离呼吸与心跳信号。
5 结束语
毫米波雷达应用于生命探测领域,克服了常 见的非接触式检测的弊端,已成为生命探测领域 的重要研究方向。本文对比了常见的三种生命特 征提取算法,其中小波变换法与经验模态分解法 具有高精度、多分辨率的优势,因此具有广泛的应 用前景。