论文阅读《Self-supervised Graph Learning for Recommendation》

文章提出SGL框架,将自监督学习应用于图结构数据增强,以解决GCN推荐算法对高度节点过度关注和易受噪声影响的问题。通过节点舍弃、边舍弃和随机游走生成不同视图,提高推荐算法的稳健性和效果。自监督学习通过对比学习优化目标,促使同一节点视图的嵌入向量接近,不同节点向量偏离,实现数据增强。
摘要由CSDN通过智能技术生成

总结

文章认为当前的推荐算法往往是基于GCN的结构监督学习,更侧重于网络中度数高(即发生交互多)的节点而忽视了低度数节点,此外还容易受到交互噪声的影响。因此文章将自监督学习Self-supervised Learning引入到图结构数据上,提出了SGL框架,通过利用节点舍弃、边舍弃和随机游走三种方法,为同一个节点生成不同视图,从而达到了在原有数据上的增强,进一步提高了推荐算法的稳健型和效果。下图为传统监督图学习和自监督图学习的区别:

在这里插入图片描述

1 GCN结构和监督学习

现有推荐算法往往都基于GCN结构,即通过堆叠多层来为网络中的节点学习嵌入向量,其基本公式如下:

在这里插入图片描述

通过结合上一层的节点自身向量与上一层需要聚合的相关节点向量,进而生成本层的节点向量,在执行L层后,最终的节点向量可计算如下:

在这里插入图片描述

这种基于GCN结构的推荐算法,往往使用监督学习的模式,即根据图结构与学习得到的向量,构建损失函数促使预测的推荐结果与真实的交互结果更接近:

在这里插入图片描述

2 利用自监督学习对图结构进行数据增强

文章通过小部分地改变图结构,为每个节点生成多个视图,在训练过程中,促使属于同一节点视图生成的嵌入向量更加接近,而非同一节点的向量更加偏离。具体地,算法每次为每个节点额外多生成两个视图,记为Z_1和Z_2:

在这里插入图片描述

其中,H为与GCN相似的聚合函数,s则表示对图结构进行的不同调整。

2.1 节点舍弃(Node Dropout)

使用节点舍弃的方法时,设置概率p,则每个节点有p的可能性在图结构中被舍弃,公式如下:

在这里插入图片描述

其中M为掩码向量,通过将某个节点对应位置上的掩码设置为0,即在图结构中屏蔽了该节点。这种数据增强有望从不同的增强视图中识别有影响的节点,并使表征学习对结构变化不那么敏感。

2.2 边舍弃(Edge Dropout)

边的舍弃方法与节点相同,同样是按照某个概率随机舍弃现有边:

在这里插入图片描述

2.3 随机游走(Random Walk)

值得注意的是,上述两种方法都是在同一层中生成不同子图,而随机游走则是为不同层分配不同子图(即同层使用同一游走结果),示意图如下:

在这里插入图片描述

此外,随机游走与上述两种舍弃方法是可以共存的,因此节点在不同层拥有不同的图结构,在同一层再经过节点或边的舍弃得到两个不同视图:

在这里插入图片描述

3 对比学习

在为每个节点生成两个不同的视图之后,算法将这两个视图衍生的嵌入向量视为正样本对,将其他不同的节点视为负样本对,那么自监督学习的优化目标即令正样本对中的两个嵌入向量尽可能相似,有:

在这里插入图片描述

其中z’和z’'代表两个视图的嵌入向量,函数s()用于计算向量间的相似度。值得注意的是,在推荐算法中,用户和商品的节点向量要分开考虑,因此自监督学习的损失函数应为上述用户和商品损失函数的加和。

4 多任务训练

自监督学习是用于增强推荐算法稳健型和效果的通用性框架,因此除自监督的优化目标外,整体的损失函数还需要考虑推荐的优化目标,则有:
在这里插入图片描述

main指的即任意推荐算法的核心推荐损失函数,自监督损失和罚项则通过不同的超参数进行调节。
此外,文章还针对自监督学习的理论解释和复杂度做了分析。

自我监督学习是一种机器学习方法,通过对数据进行合理的预测任务,从中获得有用的表示。与传统的监督学习不同,自我监督学习不需要人工标注的标签来指导训练,而是利用数据自身的信息进行训练。 自我监督学习的基本思想是从未标记的数据中构造有意义的标签,然后将这些标签用作训练数据,以学习有用的特征表示。通过对输入数据进行某种形式的变换或遮挡,可以生成一对相关的样本。其中一个样本称为正样本,另一个则被视为负样本。例如,在图像领域中,可以通过将图像进行旋转、裁剪或遮挡等变换来生成正负样本对。模型的目标是通过学习从一个样本到另一个样本的映射,从而使得正样本对之间的相似度更高,负样本对之间的相似度更低。 自我监督学习在许多任务中都取得了很好的效果。例如,在自然语言处理任务中,可以通过遮挡句子中的某些单词或短语来生成正负样本对,然后通过学习从一个句子到另一个句子的映射来进行训练。在计算机视觉任务中,可以通过图像的旋转、裁剪、遮挡或色彩变换等方式来生成正负样本对。 自我监督学习的优点是不需要人工标注的标签,可以利用大量的未标记数据来进行训练,从而扩大训练数据的规模。此外,自我监督学习还可以通过学习到的特征表示来提高其他任务的性能,如分类、目标检测和语义分割等。 总之,自我监督学习是一种有效的无监督学习方法,通过构造有意义的预测任务,从未标记的数据中学习有用的特征表示。它在各种任务中都有广泛的应用,并具有很高的潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值