视觉SLAM十四讲|【三】李代数旋转计算示例

本文详细介绍了在视觉SLAM中,利用李代数进行旋转计算的示例,包括通过右旋近似求解旋转矩阵的微分,以及对数和指数运算在旋转表示中的应用。
摘要由CSDN通过智能技术生成

视觉SLAM十四讲|【三】李代数旋转计算示例

示例1

δ ( R − 1 p ) δ R \frac{\delta(R^{-1}p)}{\delta R } δRδ(R1p)
以右旋近似,可以得到如下
= lim ⁡ ϕ → 0 ( ( R ( e x p ( ϕ ∧ ) ) ) − 1 p ) − R − 1 p ϕ =\lim_{\phi \rightarrow 0} \frac{((R(exp(\phi^{\wedge})))^{-1}p)-R^{-1}p}{\phi} =ϕ0limϕ((R(exp(ϕ)))1p)R1p
= lim ⁡ ϕ → 0 e x p ( ϕ ∧ ) − 1 R − 1 p − R − 1 p ϕ =\lim_{\phi \rightarrow 0} \frac{exp(\phi^{\wedge})^{-1}R^{-1}p-R^{-1}p}{\phi} =ϕ0limϕexp(ϕ)1R1pR1p
= lim ⁡ ϕ → 0 ( I + ϕ ∧ ) − 1 R − 1 p − R − 1 p ϕ =\lim_{\phi \rightarrow 0} \frac{(I+\phi^{\wedge})^{-1}R^{-1}p-R^{-1}p}{\phi} =ϕ0limϕ(I+ϕ)1R1pR1p
= lim ⁡ ϕ → 0 ( I − ϕ ∧ ) R − 1 p − R − 1 p ϕ =\lim_{\phi \rightarrow 0} \frac{(I-\phi^{\wedge})R^{-1}p-R^{-1}p}{\phi} =ϕ0limϕ(Iϕ)R1pR1p
= lim ⁡ ϕ → 0 ( − ϕ ∧ ) R − 1 p ϕ =\lim_{\phi \rightarrow 0} \frac{(-\phi^{\wedge})R^{-1}p}{\phi} =ϕ0limϕ(ϕ)R1p
为了将分母中的 ϕ \phi ϕ消元掉,需要把 ϕ ∧ \phi^{\wedge} ϕ转换为 ϕ \phi ϕ,考虑到李代数伴随矩阵的性质如下
a ∧ b = − b ∧ a a^{\land} b = -b^{\land}a ab=ba
可以化简上式为
= lim ⁡ ϕ → 0 − ( R − 1 p ) ∧ ( − ϕ ) ϕ =\lim_{\phi \rightarrow 0} \frac{-(R^{-1}p)^{\wedge} (-\phi)}{\phi} =ϕ0limϕ(R1p)(ϕ)
= ( R − 1 p ) ∧ =(R^{-1}p)^{\wedge} =(R1p)

示例2

δ l n ( R 1 R 2 − 1 ) ∨ δ R 2 \frac{\delta ln(R_1R_2^{-1})^{\vee}}{\delta R_2} δR2δln(R1R21)
以右旋近似,可以得到如下
lim ⁡ ϕ → 0 l n ( R 1 ( R 2 exp ⁡ ( ϕ ∧ ) ) − 1 ) ∨ − l n ( R 1 R 2 − 1 ) ∨ ϕ \lim_{\phi \rightarrow 0} \frac{ln(R_1(R_2\exp(\phi^{\wedge}))^{-1})^{\vee}-ln(R_1R_2^{-1})^{\vee}}{\phi} ϕ0limϕln(R1(R2exp(ϕ))1)ln(R1R21)
= lim ⁡ ϕ → 0 l n ( R 1 exp ⁡ ( ϕ ∧ ) − 1 R 2 − 1 ) ∨ − l n ( R 1 R 2 − 1 ) ∨ ϕ = \lim_{\phi \rightarrow 0} \frac{ln(R_1\exp(\phi^{\wedge})^{-1}R_2^{-1})^{\vee}-ln(R_1R_2^{-1})^{\vee}}{\phi} =ϕ0limϕln(R1exp(ϕ)1R21)ln(R1R21)
为了化简式子,需要把 ϕ ∧ \phi^{\wedge} ϕ的矩阵化算子转移到最右边,已知SO(3)伴随性质:
R T e x p ( ϕ ∧ ) R = e x p ( ( R T ϕ ) ∧ ) R^Texp(\phi^{\land})R = exp((R^T\phi)^{\land}) RTexp(ϕ)R=exp((RTϕ))
又有
R T = R − 1 , ( R T ) − 1 = R , R R T = I R^T=R^{-1},(R^T)^{-1}=R,RR^T=I RT=R1,RT1=R,RRT=I
所以对上式中 l n ( R 1 exp ⁡ ( ϕ ∧ ) − 1 R 2 − 1 ) ∨ ln(R_1\exp(\phi^{\wedge})^{-1}R_2^{-1})^{\vee} ln(R1exp(ϕ)1R21),有
= l n ( R 1 R 2 − 1 R 2 exp ⁡ ( ϕ ∧ ) − 1 R 2 − 1 ) ∨ =ln(R_1R_2^{-1}R_2\exp(\phi^{\wedge})^{-1}R_2^{-1})^{\vee} =ln(R1R21R2exp(ϕ)1R21)
= l n ( R 1 R 2 − 1 ( ( R 2 ) − 1 ) T exp ⁡ ( ϕ ∧ ) − 1 R 2 − 1 ) ∨ =ln(R_1R_2^{-1}((R_2)^{-1})^{T}\exp(\phi^{\wedge})^{-1}R_2^{-1})^{\vee} =ln(R1R21((R2)1)Texp(ϕ)1R21)
= l n ( R 1 R 2 − 1 ( ( R 2 ) − 1 ) T exp ⁡ ( − ϕ ∧ ) R 2 − 1 ) ∨ =ln(R_1R_2^{-1}((R_2)^{-1})^{T}\exp(-\phi^{\wedge})R_2^{-1})^{\vee} =ln(R1R21((R2)1)Texp(ϕ)R21)
= l n ( R 1 R 2 − 1 exp ⁡ ( ( ( R 2 − 1 ) T ) ( − ϕ ∧ ) ) ) ∨ =ln(R_1R_2^{-1}\exp(((R_2^{-1})^T)(-\phi^{\wedge})))^{\vee} =ln(R1R21exp(((R21)T)(ϕ)))
= l n ( R 1 R 2 − 1 exp ⁡ ( − R 2 ϕ ) ∧ ) ∨ =ln(R_1R_2^{-1}\exp(-R_2\phi)^{\wedge})^{\vee} =ln(R1R21exp(R2ϕ))
因此,对于整个式子,有
= lim ⁡ ϕ → 0 l n ( R 1 R 2 − 1 exp ⁡ ( − R 2 ϕ ) ∧ ) ∨ − l n ( R 1 R 2 − 1 ) ∨ ϕ = \lim_{\phi \rightarrow 0} \frac{ln(R_1R_2^{-1}\exp(-R_2\phi)^{\wedge})^{\vee}-ln(R_1R_2^{-1})^{\vee}}{\phi} =ϕ0limϕln(R1R21exp(R2ϕ))ln(R1R21)
此时,考虑把 R 1 R 2 − 1 exp ⁡ ( − R 2 ϕ ∧ ) R_1R_2^{-1}\exp(-R_2\phi^{\wedge}) R1R21exp(R2ϕ)中的前后分开,注意到李代数的性质如下
l n ( R e x p ( ϕ ∧ ) ) ∨ = l n ( R ) ∨ + J r − 1 ϕ ln(Rexp(\phi^{\land}))^{\vee}=ln(R)^{\vee}+J_r^{-1}\phi ln(Rexp(ϕ))=ln(R)+Jr1ϕ
因此有
= lim ⁡ ϕ → 0 l n ( R 1 R 2 − 1 ) ∨ + J r − 1 ( l n ( R 1 R 2 − 1 ) ∨ ) ( − R 2 ϕ ) − l n ( R 1 R 2 − 1 ) ∨ ϕ = \lim_{\phi \rightarrow 0} \frac{ln(R_1R_2^{-1})^{\vee}+J_r^{-1}(ln(R_1R_2^{-1})^{\vee})(-R_2\phi)-ln(R_1R_2^{-1})^{\vee}}{\phi} =ϕ0limϕln(R1R21)+Jr1(ln(R1R21))(R2ϕ)ln(R1R21)
= − J r − 1 ( l n ( R 1 R 2 − 1 ) ∨ ) R 2 =-J_r^{-1}(ln(R_1R_2^{-1})^{\vee})R_2 =Jr1(ln(R1R21))R2
其中

J l = s i n θ θ I + ( 1 − s i n θ θ ) a a T + 1 − c o s θ θ a ∧ J_l = \frac{sin\theta}{\theta}I + (1- \frac{sin\theta}{\theta})aa^T + \frac{1-cos\theta}{\theta}a^{\land} Jl=θsinθI+(1θsinθ)aaT+θ1cosθa

J l − 1 = θ 2 c o t θ 2 I + ( 1 − θ 2 c o t θ 2 ) a a T − θ 2 a ∧ J_l ^{-1} = \frac{\theta}{2}cot \frac{\theta}{2}I + (1- \frac{\theta}{2}cot \frac{\theta}{2})aa^T - \frac{\theta}{2}a^{\land} Jl1=2θcot2θI+(12θcot2θ)aaT2θa
J r ( ϕ ) = J l ( − ϕ ) J_r(\phi) = J_l(-\phi) Jr(ϕ)=Jl(ϕ)

  • 20
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值