先来说一下罗德里格公式的作用:已知一向量,知道旋转轴和旋转角度,可求得旋转后的向量。简单地说,知道旋转轴和旋转角度,可以求得旋转矩阵。
接下来用图解方式,给出罗德里格旋转公式的证明(理解证明,对矩阵、向量、叉乘、点乘的几何意义会有质的提高)
恩,接下来对这张大图,进行下分析:已知一向量p,知道旋转轴u(满足范数为1,即单位矢量),旋转角度。接下来对图中的标号做一下分析:
- 右上角蓝色的(p.u)代表p与u的内积,(p.u)u代表向量p在旋转轴上的投影,即如果把u比作z轴,则(p.u)代表向量p的z坐标的大小。
- p-(p.u)u则可以比作向量p在垂直于z轴(u)的平面上的投影,该平面上的投影矢量为v