罗德里格旋转和李群、李代数的指数映射的关系

本文探讨了罗德里格旋转公式的几何意义,通过图解证明展示了如何从旋转轴和角度计算旋转后的向量。进一步解释了罗德里格公式与SO(3)李群的指数坐标之间的关系,指出两者在数学表达上的等价性,从而揭示了不同数学概念间的内在联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        先来说一下罗德里格公式的作用:已知一向量,知道旋转轴和旋转角度,可求得旋转后的向量。简单地说,知道旋转轴和旋转角度,可以求得旋转矩阵。

        接下来用图解方式,给出罗德里格旋转公式的证明(理解证明,对矩阵、向量、叉乘、点乘的几何意义会有质的提高)

                               

        恩,接下来对这张大图,进行下分析:已知一向量p,知道旋转轴u(满足范数为1,即单位矢量),旋转角度\phi。接下来对图中的标号做一下分析:

  1. 右上角蓝色的(p.u)代表p与u的内积,(p.u)u代表向量p在旋转轴上的投影,即如果把u比作z轴,则(p.u)代表向量p的z坐标的大小。
  2. p-(p.u)u则可以比作向量p在垂直于z轴(u)的平面上的投影,该平面上的投影矢量为v
  3. u\times v
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值