7.3 向量的数量积与向量积

🙌作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人!
🌙个人主页:阿芒的主页
⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学这门课的知识点,参考书主要为经典的同济版第七版《高等数学》以及作者在高校使用的《高等数学》系统教材。梳理《高等数学》这门课,旨在帮助那些刚刚接触这门课的小白以及需要系统复习这门课的考研人士。希望自己的一些经验能够帮助更多的人。

向量的数量积

  1. 定义:

设向量 a → \overrightarrow{a} a , b → \overrightarrow{b} b 的夹角为 θ \theta θ,称
∣ a → ∣ ∣ b → ∣ c o s |\overrightarrow{a}||\overrightarrow{b}|cos a ∣∣b cos θ \theta θ记作 a → ⋅ b → \overrightarrow{a}\cdot\overrightarrow{b} a b a → \overrightarrow{a} a b → \overrightarrow{b} b 数量积(点积、内积)

  1. 性质

(1) a → ⋅ a → \overrightarrow{a}\cdot\overrightarrow{a} a a = ∣ a → ∣ 2 |\overrightarrow{a}|^{2} a 2
(2) a → \overrightarrow{a} a , b → \overrightarrow{b} b 为两个非零向量,则有 a → ⋅ b → \overrightarrow{a}\cdot\overrightarrow{b} a b =0 ⟺ \Longleftrightarrow a → ⊥ b → \overrightarrow{a}\bot\overrightarrow{b} a b

注:由于零向量的方向是任意的,所有规定零向量与任何向量都垂直.

  1. 运算规律

(1)交换律: a → ⋅ b → \overrightarrow{a}\cdot\overrightarrow{b} a b = b → ⋅ a → \overrightarrow{b}\cdot\overrightarrow{a} b a
(2)结合律: ( λ a → ) ⋅ b → (\lambda\overrightarrow{a})\cdot\overrightarrow{b} (λa )b = a → ⋅ ( λ b → ) \overrightarrow{a}\cdot(\lambda\overrightarrow{b}) a (λb )= λ ( a → ⋅ b → ) \lambda(\overrightarrow{a}\cdot\overrightarrow{b}) λ(a b )
                  ~~~~~~~~~~~~~~~~~                   ( λ a → ) ⋅ ( μ b → ) (\lambda\overrightarrow{a})\cdot(\mu\overrightarrow{b}) (λa )(μb )= λ ( a → ⋅ ( λ b → ) ) \lambda(\overrightarrow{a}\cdot(\lambda\overrightarrow{b})) λ(a (λb ))= λ μ ( a → ⋅ b → ) \lambda\mu(\overrightarrow{a}\cdot\overrightarrow{b}) λμ(a b )(其中 λ , μ \lambda,\mu λμ为实数)
(3)分配律: ( a → + b → ) ⋅ c → (\overrightarrow{a}+\overrightarrow{b})\cdot\overrightarrow{c} (a +b )c = a → ⋅ c → \overrightarrow{a}\cdot\overrightarrow{c} a c + b → ⋅ c → \overrightarrow{b}\cdot\overrightarrow{c} b c

  1. 坐标表示
  • a → \overrightarrow{a} a = a x i → + a y j → + a z k → a_{x}\overrightarrow{i}+a_{y}\overrightarrow{j}+a_{z}\overrightarrow{k} axi +ayj +azk , b → \overrightarrow{b} b = b x i → + b y j → + b z k → b_{x}\overrightarrow{i}+b_{y}\overrightarrow{j}+b_{z}\overrightarrow{k} bxi +byj +bzk ,则
    a → ⋅ b → \overrightarrow{a}\cdot\overrightarrow{b} a b = a x b x + a y b y + a z b z a_{x}b_{x}+a_{y}b_{y}+a_{z} b_{z} axbx+ayby+azbz

  • 两向量夹角公式
    a → \overrightarrow{a} a , b → \overrightarrow{b} b 为两个非零向量时,由于 a → ⋅ b → \overrightarrow{a}\cdot\overrightarrow{b} a b = ∣ a → ∣ ∣ b → ∣ c o s |\overrightarrow{a}||\overrightarrow{b}|cos a ∣∣b cos θ \theta θ,从而
    c o s θ cos\theta cosθ= a → ⋅ b → ∣ a → ∣ ∣ b → ∣ \frac{\overrightarrow{a}\cdot\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|} a ∣∣b a b = a x b x + a y b y + a z b z a x 2 + a y 2 + a z 2 b x 2 + b y 2 + b z 2 \frac{a_{x}b_{x}+a_{y}b_{y}+a_{z} b_{z}}{ \sqrt{a^{2}_{x}+a^{2}_{y}+a^{2}_{z} }\sqrt{b^{2}_{x}+b^{2}_{y}+b^{2}_{z} }} ax2+ay2+az2 bx2+by2+bz2 axbx+ayby+azbz

  • 两向量垂直的充要条件
    a → ⊥ b → \overrightarrow{a}\bot\overrightarrow{b} a b ⟺ \Longleftrightarrow a x b x + a y b y + a z b z = 0 a_{x}b_{x}+a_{y}b_{y}+a_{z} b_{z}=0 axbx+ayby+azbz=0


向量的向量积

  1. 定义

设向量 a → \overrightarrow{a} a , b → \overrightarrow{b} b 的夹角为 θ \theta θ,定义
向量 c → \overrightarrow{c} c :①方向: c → ⊥ a → \overrightarrow{c}\bot\overrightarrow{a} c a , c → ⊥ b → \overrightarrow{c}\bot\overrightarrow{b} c b 且符合右手规则
              ~~~~~~~~~~~~~               ②模: ∣ c → ∣ |\overrightarrow{c}| c = ∣ a → ∣ ∣ b → ∣ s i n |\overrightarrow{a}||\overrightarrow{b}|sin a ∣∣b sin θ \theta θ
c → \overrightarrow{c} c a → 与 b → \overrightarrow{a}与\overrightarrow{b} a b 为的向量积(叉积),记作 c → \overrightarrow{c} c = a → × b → \overrightarrow{a}×\overrightarrow{b} a ×b

  1. 性质

(1) a → × a → \overrightarrow{a}×\overrightarrow{a} a ×a = 0 → \overrightarrow{0} 0
(2) a → \overrightarrow{a} a , b → \overrightarrow{b} b 为两个非零向量,则有 a → × b → \overrightarrow{a}×\overrightarrow{b} a ×b =0 ⟺ \Longleftrightarrow a → ∥ b → \overrightarrow{a}\parallel\overrightarrow{b} a b

  1. 运算规律

(1) a → × b → \overrightarrow{a}×\overrightarrow{b} a ×b =- b → × a → \overrightarrow{b}×\overrightarrow{a} b ×a
(2)结合律: ( λ a → ) × b → (\lambda\overrightarrow{a})×\overrightarrow{b} (λa )×b = a → × ( λ b → ) \overrightarrow{a}×(\lambda\overrightarrow{b}) a ×(λb )= λ ( a → × b → ) \lambda(\overrightarrow{a}×\overrightarrow{b}) λ(a ×b )
(3)分配律: ( a → + b → ) × c → (\overrightarrow{a}+\overrightarrow{b})×\overrightarrow{c} (a +b )×c = a → × c → \overrightarrow{a}×\overrightarrow{c} a ×c + b → × c → \overrightarrow{b}×\overrightarrow{c} b ×c

  1. 坐标表示
  • a → \overrightarrow{a} a = a x i → + a y j → + a z k → a_{x}\overrightarrow{i}+a_{y}\overrightarrow{j}+a_{z}\overrightarrow{k} axi +ayj +azk , b → \overrightarrow{b} b = b x i → + b y j → + b z k → b_{x}\overrightarrow{i}+b_{y}\overrightarrow{j}+b_{z}\overrightarrow{k} bxi +byj +bzk ,则
    a → × b → \overrightarrow{a}×\overrightarrow{b} a ×b = ( a y b z − a z b y ) i → + ( a z b x − a x b z ) j → + ( a x b y − a y b x ) k → (a_{y}b_{z}-a_{z}b_{y})\overrightarrow{i}+(a_{z}b_{x}-a_{x} b_{z})\overrightarrow{j}+(a_{x}b_{y}-a_{y} b_{x})\overrightarrow{k} (aybzazby)i +(azbxaxbz)j +(axbyaybx)k
  • 两个向量积的行列式表示
    a → × b → \overrightarrow{a}×\overrightarrow{b} a ×b = ( a y b z − a z b y ) i → + ( a z b x − a x b z ) j → + ( a x b y − a y b x ) k → (a_{y}b_{z}-a_{z}b_{y})\overrightarrow{i}+(a_{z}b_{x}-a_{x} b_{z})\overrightarrow{j} +(a_{x}b_{y}-a_{y} b_{x})\overrightarrow{k} (aybzazby)i +(azbxaxbz)j +(axbyaybx)k = ∣ i → j → k → a x a y a z b x b y b z ∣ \left| \begin{array}{cccc} \overrightarrow{i}&\overrightarrow{j}&\overrightarrow{k}\\ a_{x}&a_{y}&a_{z}\\ b_{x}&b_{y}&b_{z}\\ \end{array} \right| i axbxj aybyk azbz

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是阿芒阿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值