一. MPC最优控制(receding horizon control滚动优化控制)

本文探讨了MPC(模型预测控制)的局限性,如计算量大,以及其优势,针对LQR的问题提供了解决方案。MPC通过预测系统未来性能进行优化控制,包括状态估计、优化计算和控制施加三个步骤。文章还提及了MPC的二次规划模型,并引用了MATLAB代码示例,强调了预测区间长度对MPC收敛性的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. MPC局限:

每一步都要做优化问题,计算量大

二. MPC优点 :

LQR中的\int _{t_{0}}^{\infty }需要消耗大量算力,并且前一时刻计算出来的最优不一定是下一时刻的最优,因此引出MPC

三. MPC定义:

通过模型来预测系统在未来某一段时间内的表现来进行优化控制 

三步骤:

(1) 估计/测量系统的状态值

(2)基于u_{k},u_{k+1},...,u_{k-N+1}做优化

(3)只施加u_{k}

 3.1 MPC 二次规划模型

MPC——模型预测控制 | 范子琦的博

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值