神经网络训练多个epoch,写论文的时候可以取最好的效果那一个epoch作为结果吗?

在论文中,通常建议报告在验证集上表现最佳的模型作为结果。你可以在训练过程中记录每个 epoch 的性能,并选择在验证集上性能最好的那个 epoch 的结果。这种方法能够展示你所训练的模型在其最佳状态下的表现。
在这里插入图片描述

这样做有几个优点:

  1. 客观展示模型最佳表现:提供了模型在最佳状态下的性能数据,能够更真实地展示模型的潜力。

  2. 减少偶然性:有时模型在训练集上的效果可能会出现偶然性波动,而验证集的性能能更稳定地反映模型的能力。

但是,你也需要在论文中明确指出这个选择的标准,并解释如何选择最佳模型。例如:

  • 记录指标:详细说明你是如何记录每个 epoch 的指标(如准确率、损失值等)。

  • 选择标准:说明选择最佳 epoch 的标准(如验证集上的最高准确率)。

此外,你还可以考虑进行多次实验,并报告这些实验的平均性能或标准差,这可以为读者提供更全面的性能评估。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fighting的码农(zg)-GPT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值