数学建模学习笔记(4)统计问题–回归分析_matlab实现
统计工具箱:
最小二乘法
b = regress(Y,X)
其中Y,X为数组矩阵,b为回归系数估计值·
[b,bint,r,rint,stats] = regress(Y,X,alpha)
Y,X同上,alpha为显著性水平,默认值为0.05
b,bint为回归系数估计值和其置信区间
r,rint为残差与其置信区间,
stats是用于检验回归模型的统计量
1.相关系数R^2,越接近1则回归模型越显著
2.F值,越大越显著
3.p值,越小越好
残差与其置信区间可用rcoplot(r,rint)画图
clc,clear
x1=[0.1:0.01:0.1]';
y=[42,14.5,45.0,45.5,45.0,47.5,49.0,55.0,50.0]';
x=[ones(9,1)x1];
[b,bint,r,rint,stats]=regress(y,x);
b,bint,stats,rcoplot(r,rint)
多元线性回归spss操作
多元线性选择步进
选择步进的优点在于会根据加入的数值不断变化回归模型,使得模型更为可靠。但是迭代运算量会显著增加。