数学建模(4)matlab/spss实现多元线性回归

数学建模学习笔记(4)统计问题–回归分析_matlab实现

统计工具箱:

最小二乘法

b = regress(Y,X)

其中Y,X为数组矩阵,b为回归系数估计值·

[b,bint,r,rint,stats] = regress(Y,X,alpha)

Y,X同上,alpha为显著性水平,默认值为0.05

b,bint为回归系数估计值和其置信区间

r,rint为残差与其置信区间,

stats是用于检验回归模型的统计量
1.相关系数R^2,越接近1则回归模型越显著
2.F值,越大越显著
3.p值,越小越好
残差与其置信区间可用rcoplot(r,rint)画图

clc,clear
x1=[0.1:0.01:0.1]';
y=[42,14.5,45.0,45.5,45.0,47.5,49.0,55.0,50.0]';
x=[ones(9,1)x1];
[b,bint,r,rint,stats]=regress(y,x);
b,bint,stats,rcoplot(r,rint)

多元线性回归spss操作

在这里插入图片描述

多元线性选择步进

在这里插入图片描述

选择步进的优点在于会根据加入的数值不断变化回归模型,使得模型更为可靠。但是迭代运算量会显著增加。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

狗头狗不狗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值