SE Block(Sequeze and Excitation)

原文链接:https://blog.csdn.net/bl128ve900/article/details/93778729

 

 

 

看senet block的代码,明白如何实现


 
 
  1. def Squeeze_excitation_layer(self, input_x, out_dim, ratio, layer_name):
  2. with tf.name_scope(layer_name) :
  3. squeeze = Global_Average_Pooling(input_x) #对每个通道取全局最大化
  4. excitation = Fully_connected(squeeze, units=out_dim / ratio, layer_name=layer_name+ '_fully_connected1')
  5. excitation = Relu(excitation)
  6. #为什么用两个全卷基层, 而且为什么卷基层的unit不同?
  7. excitation = Fully_connected(excitation, units=out_dim, layer_name=layer_name+ '_fully_connected2')
  8. excitation = Sigmoid(excitation)
  9. excitation = tf.reshape(excitation, [ -1, 1, 1,out_dim])
  10. scale = input_x * excitation
  11. return scale

 为什么用两个全卷基层, 而且为什么卷基层的unit不同?

(1) 用两个全连接层,因为一个全连接层无法同时应用relu和sigmoid两个非线性函数,但是两者又缺一不可。

(2) 为了减少参数,所以设置了r比率。(论文中取的是16)

作者在准确率和参数量之间取了一个折中,r = 16.

 

 

参考

(1)[DL-架构-ResNet系] 007 SENet https://zhuanlan.zhihu.com/p/29708106

(2)【深度学习从入门到放弃】Squeeze-and-Excitation Networks https://zhuanlan.zhihu.com/p/29812913

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值