ChineseErrorCorrector发布量化版本大模型,推理显存仅占用6G!

项目地址:GitHub - TW-NLP/ChineseErrorCorrector: 中文拼写错误和语法错误纠正

文本纠错任务在审查、写作任务中至关重要,以前的纠错大多采用小模型进行训练,例如BART、T5、BERT等,但是小模型的泛化性较差,需要在不同领域训练不同的小模型进行纠错,为此我们使用200万数据进行大模型的训练,经过验证我们在GitHub - masr2000/NaCGEC数据集上,F1值比华为高17个点,遥遥领先,下面从三个方面进行详细的技术说明:数据集(涵盖业界所有的开源数据)、评估结果、使用方法,欢迎star,后续会持续更新纠错模型。

1、数据集

数据集名称数据链接数据量和类别说明描述
CSC(拼写纠错数据集)twnlp/csc_dataW271K:279,816 条,Medical:39,303 条,Lemon:22,259 条,ECSpell:6,688 条,CSCD:35,001 条中文拼写纠错的数据集
CGC(语法纠错数据集)twnlp/cgc_dataCGED:20449 条,FCGEC:37354 条,MuCGEC:2467 条,NaSGEC:7568条中文语法纠错的数据集
Lang8+HSK(百万语料-拼写和语法错误混合数据集)twnlp/lang8_hsk1568885条中文拼写和语法数据集

项目包含三个部分的数据集,分别为CSC、CGC和Lang8+HSK,涵盖了所有开源高质量的拼写纠错和语法纠错的数据集,也是我们分阶段训练的数据。

2、评估结果

Model NameModel LinkPrecRecF0.5
twnlp/ChineseErrorCorrector2-7Bhuggingface ; modelspose(国内下载)0.62330.62280.6232
twnlp/ChineseErrorCorrector2-7B-AWQhuggingface0.5140.56710.5238
HW_TSC_nlpcc2023_cgec(华为)未开源0.50950.31290.4526
鱼饼啾啾Plus(北京大学)未开源0.57080.12940.3394
CUHK_SU(香港中文大学)未开源0.38820.15580.2990
CGEC++(东南大学)未开源0.24140.07350.1657
zhao_jia未开源0.17190.14780.1665

3、使用方法

transformers

通过 transformers 库,您可以方便地加载和使用中文拼写纠错模型:

# 安装 transformers 库
pip install transformers

以下是使用模型进行纠错的代码示例:

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "twnlp/ChineseErrorCorrector2-7B"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "你是一个文本纠错专家,纠正输入句子中的语法错误,并输出正确的句子,输入句子为:"
text_input = "少先队员因该为老人让坐。"
messages = [
    {"role": "user", "content": prompt + text_input}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)

VLLM

使用 VLLM 进行推理,支持快速高效地生成文本:

# 安装 VLLM
pip install vllm

以下是 VLLM 示例代码:

from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

# Initialize the tokenizer
tokenizer = AutoTokenizer.from_pretrained("twnlp/ChineseErrorCorrector2-7B")

# Pass the default decoding hyperparameters of twnlp/ChineseErrorCorrector-7B
# max_tokens is for the maximum length for generation.
sampling_params = SamplingParams(seed=42, max_tokens=512)

# Input the model name or path. Can be GPTQ or AWQ models.
llm = LLM(model="twnlp/ChineseErrorCorrector2-7B")

# Prepare your prompts
prompt = "少先队员因该为老人让坐。"
messages = [
    {"role": "user", "content": "你是一个文本纠错专家,纠正输入句子中的语法错误,并输出正确的句子,输入句子为:"+prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

# generate outputs
outputs = llm.generate([text], sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") 

总结

ChineseErrorCorrector 是一个强大的中文拼写和语法纠错工具,开箱即用,后面会不断的跟进前沿的纠错方法和数据,不断更新开源模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值