抽象代数练习(I)

Hw1:证明 “ − - ” 在 R , Q , Z \mathbb{R},\mathbb{Q},\mathbb{Z} R,Q,Z上不是交换或结合的二元运算。

证明:
{ φ ( a , b ) = b − a φ ( b , a ) = a − b \left\{ \begin{aligned} & \varphi \left( a,b \right)=b-a \\ & \varphi \left( b,a \right)=a-b \\ \end{aligned} \right. { φ(a,b)=baφ(b,a)=ab
⇒ φ ( a , b ) − φ ( b , a ) = 2 ( a − b ) ≡ 0 \Rightarrow \varphi \left( a,b \right)-\varphi \left( b,a \right)=2\left( a-b \right)\cancel{\equiv }0 φ(a,b)φ(b,a)=2(ab) 0,
thus ‘ − - ’ is not commutative on R , Q , Z \mathbb{R},\mathbb{Q},\mathbb{Z} R,Q,Z.
{ φ ( φ ( a , b ) , c ) = ( a − b ) − c = a − b − c φ ( a , φ ( b , c ) ) = a − ( b − c ) = a − b + c \left\{ \begin{aligned} & \varphi \left( \varphi \left( a,b \right),c \right)=\left( a-b \right)-c=a-b-c \\ & \varphi \left( a,\varphi \left( b,c \right) \right)=a-\left( b-c \right)=a-b+c \\ \end{aligned} \right. { φ(φ(a,b),c)=(ab)c=abcφ(a,φ(b,c))=a(bc)=ab+c
⇒ φ ( φ ( a , b ) , c ) − φ ( a , φ ( b , c ) ) = − 2 c ≡ 0 , \Rightarrow \varphi \left( \varphi \left( a,b \right),c \right)-\varphi \left( a,\varphi \left( b,c \right) \right)=-2c\cancel{\equiv }0, φ(φ(a,b),c)φ(a,φ(b,c))=2c 0,
thus ‘ − - ’ is not associative on R , Q , Z \mathbb{R},\mathbb{Q},\mathbb{Z} R,Q,Z.

Hw2: ℜ \Re A A A上的一个等价关系,令 { K α } α { {\left\{ { {K}_{\alpha }} \right\}}_{\alpha }} { Kα}α ℜ \Re 所给出的等价类构成的集合,证明 { K α } α { {\left\{ { {K}_{\alpha }} \right\}}_{\alpha }} { Kα}α A A A的一个分划。

证明:

  1. To prove ∀ K i ∈ { K α } α ∈ A \forall { {K}_{i}}\in { {\left\{ { {K}_{\alpha }} \right\}}_{\alpha \in A}} Ki{ Kα}αA, K i ≠ ∅ { {K}_{i}}\ne \varnothing Ki=.
    ∀ K i ∈ { K α } \forall { {K}_{i}}\in \left\{ { {K}_{\alpha }} \right\} Ki{ Kα}, we see the definition of K i { {K}_{i}} Ki is
    K i : = { x ∈ A ∣ x ℜ i } . { {K}_{i}}:=\left\{ \left. x\in A \right|x\Re i \right\}. Ki:={ xAxi}.
    Because ℜ \Re is self-reflexive, we have
    i ℜ i   ⇒   i ∈ K i   ⇒   K i ≠ ∅ . i\Re i\text{ }\Rightarrow \text{ }i\in { {K}_{i}}\text{ }\Rightarrow \text{ }{ {K}_{i}}\ne \varnothing. ii  iKi  Ki=.
  2. To prove that ∀ K i , K j ∈ { K α } ,   i ≠ j ,   K i ⋂ K j = ∅ . \forall { {K}_{i}},{ {K}_{j}}\in \left\{ { {K}_{\alpha }} \right\},\text{ }i\ne j,\text{ }{ {K}_{i}}\bigcap { {K}_{j}}=\varnothing . Ki,Kj{ Kα}, i=j, KiKj=.
    Directly we have
    i ∈ K i   ∧   j ∈ K j . i\in { {K}_{i}}\text{ }\wedge \text{ }j\in { {K}_{j}}. iKi  jKj.
    And because K i ≠ K j { {K}_{i}}\ne { {K}_{j}} Ki=Kj, we have
    i ∉ K j   ∧   j ∉ K i . i\notin { {K}_{j}}\text{ }\wedge \text{ }j\notin { {K}_{i}}. i/Kj  j/Ki.
    Thus firstly we have
    i , j ∉ ( K i ⋂ K j ) . i,j\notin \left( { {K}_{i}}\bigcap { {K}_{j}} \right). i,j/(KiKj).
    Then consider ∀ k ∈ A \ { i , j } \forall k\in A\backslash \left\{ i,j \right\} kA\{ i,j}, all the possibilities are below.
      2.1:
    ( k ∉ K i ∧ k ∉ K j )   ∨   ( k ∈ K i ∧ k ∉ K j )   ∨   ( k ∉ K i ∧ k ∈ K j ) \left( k\notin { {K}_{i}}\wedge k\notin { {K}_{j}} \right)\text{ }\vee \text{ }\left( k\in { {K}_{i}}\wedge k\notin { {K}_{j}} \right)\text{ }\vee \text{ }\left( k\notin { {K}_{i}}\wedge k\in { {K}_{j}} \right) (k/Kik/Kj)  (kKik/Kj)  (k/KikKj)
    ⇒   k ∉ ( K i ⋂ K j ) \Rightarrow \text{ }k\notin \left( { {K}_{i}}\bigcap { {K}_{j}} \right)  k/(KiKj)
      2.2:
    k ∈ K i ∧ k ∈ K j   k\in { {K}_{i}}\wedge k\in { {K}_{j}}\text{ } kKikKj 
    ⇒   k R i   ∧   k R j   ⇒   i R k ∧ k R j ⇒   i R j ⇒   i ∈ K j \begin{aligned} & \Rightarrow \text{ }kRi\text{ }\wedge \text{ }kRj\text{ } \\ & \Rightarrow \text{ }iRk\wedge kRj \\ & \Rightarrow \text{ }iRj \\ & \Rightarrow \text{ }i\in { {K}_{j}} \\ \end{aligned}  kRi  kRj  iRkkRj iRj iKj
    which is contradictious with i ∉ K j i\notin { {K}_{j}} i/Kj.
    Thus ∀ k ∈ A \ { i , j } \forall k\in A\backslash \left\{ i,j \right\} kA\{ i,j}, k ∉ ( K i ⋂ K j ) k\notin \left( { {K}_{i}}\bigcap { {K}_{j}} \right) k/(KiKj).
    { K i ⋂ K j ⊂ A i , j ∉ ( K i ⋂ K j ) k ∉ ( K i ⋂ K j ) ,   ∀ k ∈ A \ { i , j }   ⇒   K i ⋂ K j = ∅ \left\{ \begin{aligned} & { {K}_{i}}\bigcap { {K}_{j}}\subset A \\ & i,j\notin \left( { {K}_{i}}\bigcap { {K}_{j}} \right) \\ & k\notin \left( { {K}_{i}}\bigcap { {K}_{j}} \right),\text{ }\forall k\in A\backslash \left\{ i,j \right\} \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }{ {K}_{i}}\bigcap { {K}_{j}}=\varnothing KiKjAi,j/(KiKj)k/(KiKj), kA\{ i,j}  KiKj=.
  3. To prove that A = ⋃ α   K α A=\underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }} A=αKα. The proposition is equal to
    A ⊂ ⋃ α   K α   ∧   ⋃ α   K α ⊂ A . A\subset \underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }}\text{ }\wedge \text{ }\underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }}\subset A. AαKα  αKαA.
      3.1 To prove that ⋃ α   K α ⊂ A . \underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }}\subset A. αKαA.
    ∀ t ∀ i ( t ∈ K i   →   t ∈ A ) ⇒   ∀ K i ∈ { K α } ,   K i ⊂ A ⇒ ⋃   K α ⊂ A \begin{aligned} & \forall t\forall i\left( t\in { {K}_{i}}\text{ }\to \text{ }t\in A \right) \\ & \Rightarrow \text{ }\forall { {K}_{i}}\in \left\{ { {K}_{\alpha }} \right\},\text{ }{ {K}_{i}}\subset A \\ & \Rightarrow {\mathop{\bigcup }}\,{ {K}_{\alpha }}\subset A \\ \end{aligned} ti(tKi  tA) Ki{ Kα}, KiAKαA.
      3.2 To prove that A ⊂ ⋃ α   K α . A\subset \underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }}. AαKα.
      Due to ⋃ α   K α ⊂ A \underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }}\subset A αKαA proved in 3.1, we divide A A A into A − ⋃ α   K α A-\underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }} AαKα & ⋃ α   K α \underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }} αKα, and we have
    A = ( A − ⋃ α   K α ) ⋃ ( ⋃ α   K α ) . A=\left( A-\underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }} \right)\bigcup \left( \underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }} \right). A=(AαKα)(αKα).
      Consider ∀ k ∈ A \forall k\in A kA, there are two possibilities:
        3.2.1 ∃ K i ∈ { K α } ,   k ∈ K i \exists { {K}_{i}}\in \left\{ { {K}_{\alpha }} \right\},\text{ }k\in { {K}_{i}} Ki{ Kα}, kKi, then obviously we have
    k ∈ ⋃ α   K α ⊂ A . k\in \underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }}\subset A. kαKαA.
        3.2.2 ∀ K i ∈ { K α } ,   k ∉ K i \forall { {K}_{i}}\in \left\{ { {K}_{\alpha }} \right\},\text{ }k\notin { {K}_{i}} Ki{ Kα}, k/Ki, then we have
    k ∉ ⋃ α   K α   ⇒   k ∈ ( A − ⋃ α   K α ) k\notin \underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }}\text{ }\Rightarrow \text{ }k\in \left( A-\underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }} \right) k/αKα  k(AαKα)
        So we can let K k : = { x ∈ ( A \ ⋃ α   K α ) ∣ x ℜ k } { {K}_{k}}:=\left\{ \left. x\in \left( A\backslash \underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }} \right) \right|x\Re k \right\} Kk:={ x(A\αKα)xk}, then we have
    k ∈ K k   ⇒   k ∈ ⋃ α   K α , k\in { {K}_{k}}\text{ }\Rightarrow \text{ }k\in \underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }}, kKk  kαKα,
        which is contradictious with k ∉ ⋃ α   K α k\notin \underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }} k/αKα.
        Thus we prove that A ⊂ ⋃ α   K α A\subset \underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }} AαKα.
      Thus we prove that A = ⋃ α   K α A=\underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }} A=αKα.
    In conclusion, we have proved
    { K i ≠ ∅ ,   ∀ K i ∈ { K α } α ∈ A K i ⋂ K j = ∅ ,   ∀ K i , K j ∈ { K α } ,   i ≠ j A = ⋃ α   K α \left\{ \begin{aligned} & { {K}_{i}}\ne \varnothing ,\text{ }\forall { {K}_{i}}\in { {\left\{ { {K}_{\alpha }} \right\}}_{\alpha \in A}} \\ & { {K}_{i}}\bigcap { {K}_{j}}=\varnothing ,\text{ }\forall { {K}_{i}},{ {K}_{j}}\in \left\{ { {K}_{\alpha }} \right\},\text{ }i\ne j \\ & A=\underset{\alpha }{\mathop{\bigcup }}\,{ {K}_{\alpha }} \\ \end{aligned} \right. Ki=, Ki{ Kα}αAKiKj=, Ki,Kj{ Kα}, i=jA=αKα
    thus { K α } α ∈ A { {\left\{ { {K}_{\alpha }} \right\}}_{\alpha \in A}} { Kα}αA is a partition of A A A.

Hw3:画出 S 3 S_3 S3的群表。

On { 1 , 2 , 3 } \left\{ 1,2,3 \right\} { 1,2,3} define permutation f i j k : = { 1 → i 2 → j 3 → k ,   i ≠ j ≠ k { {f}_{ijk}}:=\left\{ \begin{aligned} & 1\to i \\ & 2\to j \\ & 3\to k \\ \end{aligned} \right.,\text{ }i\ne j\ne k fijk:=1i2j3k, i=j=k.
Then we have the group table of S 3 { {S}_{3}} S3:
f 123 f 132 f 213 f 231 f 312 f 321 f 123 f 123 f 132 f 213 f 231 f 312 f 321 f 132 f 132 f 123 f 231 f 213 f 321 f 312 f 213 f 213 f 312 f 123 f 321 f 132 f 231 f 231 f 231 f 321 f 132 f 312 f 123 f 213 f 312 f 312 f 213 f 321 f 123 f 231 f 132 f 321 f 321 f 231 f 312 f 132 f 213 f 123 \begin{matrix} {} & { {f}_{123}} & { {f}_{132}} & { {f}_{213}} & { {f}_{231}} & { {f}_{312}} & { {f}_{321}} \\ { {f}_{123}} & { {f}_{123}} & { {f}_{132}} & { {f}_{213}} & { {f}_{231}} & { {f}_{312}} & { {f}_{321}} \\ { {f}_{132}} & { {f}_{132}} & { {f}_{123}} & { {f}_{231}} & { {f}_{213}} & { {f}_{321}} & { {f}_{312}} \\ { {f}_{213}} & { {f}_{213}} & { {f}_{312}} & { {f}_{123}} & { {f}_{321}} & { {f}_{132}} & { {f}_{231}} \\ { {f}_{231}} & { {f}_{231}} & { {f}_{321}} & { {f}_{132}} & { {f}_{312}} & { {f}_{123}} & { {f}_{213}} \\ { {f}_{312}} & { {f}_{312}} & { {f}_{213}} & { {f}_{321}} & { {f}_{123}} & { {f}_{231}} & { {f}_{132}} \\ { {f}_{321}} & { {f}_{321}} & { {f}_{231}} & { {f}_{312}} & { {f}_{132}} & { {f}_{213}} & { {f}_{123}} \\ \end{matrix} f123f132f213f231f312f321f123f123f132f213f231f312f321f132f132f123f312f321f213f231f213f213f231f123f132f321f312

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值