抽象代数练习(II)

这篇博客详细解答了一系列抽象代数的作业问题,涉及模的商模性质、含幺环的子模、模态射的基本定理、分数环的域性质、整环的度与乘法性质,以及多项式的线性无关性。通过这些证明和定理阐述,深入理解了环论和模论的基本概念与操作。
摘要由CSDN通过智能技术生成

索引

Hw11:验证商模是模。

证明:
Proof:
  Let ( M , + ) \left( M,+ \right) (M,+) be one commutative group, ( M , φ ) \left( M,\varphi \right) (M,φ) is an R-module, N < M N<M N<M & ( N , φ ) \left( N,\varphi \right) (N,φ) is a submodule of ( M , φ ) \left( M,\varphi \right) (M,φ), in which φ : R ⊙ M → M r ⊙ m 1 → m 2 \varphi :\begin{matrix} R & \odot & M & \to & M \\ r & \odot & { {m}_{1}} & \to & { {m}_{2}} \\ \end{matrix} φ:RrMm1Mm2. Consider ( M / N , ψ ) \left( M/N,\psi \right) (M/N,ψ), in which M / N = { m ‾ = m + N ∣ m ∈ N } M/N=\left\{ \left. \overline{m}=m+N \right|m\in N \right\} M/N={ m=m+NmN} and ψ ≅ φ : R ∗ M / N → M / N r ∗ m 1 ‾ → m 2 ‾ \psi \cong \varphi :\begin{matrix} R & * & M/N & \to & M/N \\ r & * & \overline{ { {m}_{1}}} & \to & \overline{ { {m}_{2}}} \\ \end{matrix} ψφ:RrM/Nm1M/Nm2.
  First we prove that ( M / N , + ) \left( M/N,+ \right) (M/N,+) is a commutative group.
Commutativity law: ∀ m 1 , m 2 ∈ M \forall { {m}_{1}},{ {m}_{2}}\in M m1,m2M,
{ ( m 1 + N ) + ( m 2 + N ) = ( m 1 + m 2 ) + ( N + N ) = ( m 1 + m 2 ) + N ( m 2 + N ) + ( m 1 + N ) = ( m 2 + m 1 ) + ( N + N ) = ( m 2 + m 1 ) + N m 1 + m 2 = m 2 + m 1 \left\{ \begin{aligned} & \left( { {m}_{1}}+N \right)+\left( { {m}_{2}}+N \right)=\left( { {m}_{1}}+{ {m}_{2}} \right)+\left( N+N \right)=\left( { {m}_{1}}+{ {m}_{2}} \right)+N \\ & \left( { {m}_{2}}+N \right)+\left( { {m}_{1}}+N \right)=\left( { {m}_{2}}+{ {m}_{1}} \right)+\left( N+N \right)=\left( { {m}_{2}}+{ {m}_{1}} \right)+N \\ & { {m}_{1}}+{ {m}_{2}}={ {m}_{2}}+{ {m}_{1}} \\ \end{aligned} \right. (m1+N)+(m2+N)=(m1+m2)+(N+N)=(m1+m2)+N(m2+N)+(m1+N)=(m2+m1)+(N+N)=(m2+m1)+Nm1+m2=m2+m1
⇒ m 1 ‾ + m 2 ‾ = m 2 ‾ + m 1 ‾ \Rightarrow \overline{ { {m}_{1}}}+\overline{ { {m}_{2}}}=\overline{ { {m}_{2}}}+\overline{ { {m}_{1}}} m1+m2=m2+m1.
Association law: ∀ m 1 , m 2 , m 3 ∈ M \forall { {m}_{1}},{ {m}_{2}},{ {m}_{3}}\in M m1,m2,m3M,
( m 1 ‾ + m 2 ‾ ) + m 3 ‾ = m 1 ‾ + ( m 2 ‾ + m 3 ‾ ) = ( m 1 + m 2 + m 3 ) + N \left( \overline{ { {m}_{1}}}+\overline{ { {m}_{2}}} \right)+\overline{ { {m}_{3}}}=\overline{ { {m}_{1}}}+\left( \overline{ { {m}_{2}}}+\overline{ { {m}_{3}}} \right)=\left( { {m}_{1}}+{ {m}_{2}}+{ {m}_{3}} \right)+N (m1+m2)+m3=m1+(m2+m3)=(m1+m2+m3)+N
Unit:: 0 ‾ = 0 + N = N \overline{0}=0+N=N 0=0+N=N.
Reversibility: ∀ m ∈ M \forall m\in M mM, ∃ ( − m ) ∈ M \exists \left( -m \right)\in M (m)M
m ‾ + ( − m ) ‾ = ( m + N ) + ( − m + N ) = ( m − m ) + N = N = 0 ‾ \overline{m}+\overline{\left( -m \right)}=\left( m+N \right)+\left( -m+N \right)=\left( m-m \right)+N=N=\overline{0} m+(m)=(m+N)+(m+N)=(mm)+N=N=0
And since ψ ≅ φ \psi \cong \varphi ψφ, it is obvious that ( M / N , ψ ) \left( M/N,\psi \right) (M/N,ψ) is an R-module.

Hw12: R R R是一个含幺环,证明

1) K e r ( f ) Ker\left( f \right) Ker(f) R − R- R模,是 M M M的子模;

证明:
需要证明两点——
K e r ( f ) < M Ker\left( f \right)<M Ker(f)<M
首先有 K e r ( f ) ⊆ M Ker\left( f \right)\subseteq M Ker(f)M
封闭性: ∀ x 1 , x 2 ∈ K e r ( f ) ,   f ( x 1 + x 2 ) = f ( x 1 ) + f ( x 2 ) = 0 + 0 = 0   ⇒   x 1 + x 2 ∈ K e r ( f ) \forall { {x}_{1}},{ {x}_{2}}\in Ker\left( f \right),\text{ }f\left( { {x}_{1}}+{ {x}_{2}} \right)=f\left( { {x}_{1}} \right)+f\left( { {x}_{2}} \right)=0+0=0\text{ }\Rightarrow \text{ }{ {x}_{1}}+{ {x}_{2}}\in Ker\left( f \right) x1,x2Ker(f), f(x1+x2)=f(x1)+f(x2)=0+0=0  x1+x2Ker(f)
结合律:继承 M M M的加法结合律。
单位元:由于 f ( 0 ) = 0 f\left( 0 \right)=0 f(0)=0 0 ∈ K e r ( f ) 0\in Ker\left( f \right) 0Ker(f),作为 M M M的单位元, 0 0 0也是 K e r ( f ) Ker\left( f \right) Ker(f)的单位元。
可逆性: ∀ x ∈ K e r ( f ) \forall x\in Ker\left( f \right) xKer(f),有 f ( 0 ) = f ( − x + x ) = f ( − x ) + f ( x ) = f ( − x ) + 0 = 0 ⇒ f ( − x ) = 0 ⇒ − x ∈ K e r ( f ) f\left( 0 \right)=f\left( -x+x \right)=f\left( -x \right)+f\left( x \right)=f\left( -x \right)+0=0\Rightarrow f\left( -x \right)=0\Rightarrow -x\in Ker\left( f \right) f(0)=f(x+x)=f(x)+f(x)=f(x)+0=0f(x)=0xKer(f).
R [ K e r ( f ) ] ⊆ K e r ( f ) R\left[ Ker\left( f \right) \right]\subseteq Ker\left( f \right) R[Ker(f)]Ker(f)
∀ x ∈ K e r ( f ) \forall x\in Ker\left( f \right) xKer(f) ∀ r ∈ R \forall r\in R rR,考虑
f ( r x ) = r f ( x ) = r × 0 = 0   ⇒   r x ∈ K e r ( f )   ⇒   R [ K e r ( f ) ] ⊆ K e r ( f ) f\left( rx \right)=rf\left( x \right)=r\times 0=0\text{ }\Rightarrow \text{ }rx\in Ker\left( f \right)\text{ }\Rightarrow \text{ }R\left[ Ker\left( f \right) \right]\subseteq Ker\left( f \right) f(rx)=rf(x)=r×0=0  rxKer(f)  R[Ker(f)]Ker(f)

2) Im ⁡ ( f ) \operatorname{Im}\left( f \right) Im(f) R − R- R模,是 M ′ M' M的子模;

证明:
需要证明两点——
Im ⁡ ( f ) < M ′ \operatorname{Im}\left( f \right)<M' Im(f)<M
首先有 Im ⁡ ( f ) ⊆ M ′ \operatorname{Im}\left( f \right)\subseteq M' Im(f)M.
封闭性: ∀ y 1 , y 2 ∈ Im ⁡ ( f ) \forall { {y}_{1}},{ {y}_{2}}\in \operatorname{Im}\left( f \right) y1,y2Im(f) ∃ x 1 , x 2 ∈ M \exists { {x}_{1}},{ {x}_{2}}\in M x1,x2M,使得
f ( x 1 ) = y 1   &   f ( x 2 ) = y 2   ⇒   f ( x 1 + x 2 ) = f ( x 1 ) + f ( x 2 ) = y 1 + y 2   ⇒   y 1 + y 2 ∈ Im ⁡ ( f ) f\left( { {x}_{1}} \right)={ {y}_{1}}\text{ }\And \text{ }f\left( { {x}_{2}} \right)={ {y}_{2}}\text{ }\Rightarrow \text{ }f\left( { {x}_{1}}+{ {x}_{2}} \right)=f\left( { {x}_{1}} \right)+f\left( { {x}_{2}} \right)={ {y}_{1}}+{ {y}_{2}}\text{ }\Rightarrow \text{ }{ {y}_{1}}+{ {y}_{2}}\in \operatorname{Im}\left( f \right) f(x1)=y1 & f(x2)=y2  f(x1+x2)=f(x1)+f(x2)=y1+y2  y1+y2Im(f)
结合律:继承 M ′ M' M的结合律。
单位元: f ( 0 ) = 0 f\left( 0 \right)=0 f(0)=0 0 ∈ Im ⁡ ( f ) 0\in \operatorname{Im}\left( f \right) 0Im(f)也是 Im ⁡ ( f ) \operatorname{Im}\left( f \right) Im(f)的单位元。
可逆性: ∀ y ∈ Im ⁡ ( f ) ,   ∃ x ∈ M ,   s . t .   f ( x ) = y \forall y\in \operatorname{Im}\left( f \right),\text{ }\exists x\in M,\text{ }s.t.\text{ }f\left( x \right)=y yIm(f), xM, s.t. f(x)=y。考虑 − x ∈ M -x\in M xM f ( − x ) f\left( -x \right) f(x) f ( 0 ) = f ( x − x ) = f ( x ) + f ( − x ) = y + f ( − x ) = 0 f\left( 0 \right)=f\left( x-x \right)=f\left( x \right)+f\left( -x \right)=y+f\left( -x \right)=0 f(0)=f(xx)=f(x)+f(x)=y+f(x)=0
⇒ f ( − x ) = − y ∈ Im ⁡ ( f ) \Rightarrow f\left( -x \right)=-y\in \operatorname{Im}\left( f \right) f(x)=yIm(f).
R [ Im ⁡ ( f ) ] ⊆ Im ⁡ ( f ) R\left[ \operatorname{Im}\left( f \right) \right]\subseteq \operatorname{Im}\left( f \right) R[Im(f)]Im(f)
∀ y ∈ Im ⁡ ( f ) ,   ∃ x ∈ M ,   s . t .   f ( x ) = y \forall y\in \operatorname{Im}\left( f \right),\text{ }\exists x\in M,\text{ }s.t.\text{ }f\left( x \right)=y yIm(f), xM, s.t. f(x)=y ∀ r ∈ R \forall r\in R rR,有 r y = r f ( x ) = f ( r x ) ,   r x ∈ M ry=rf\left( x \right)=f\left( rx \right),\text{ }rx\in M ry=rf(x)=f(rx), rxM,所以有 r y ∈ Im ⁡ ( f ) ry\in \operatorname{Im}\left( f \right) ryIm(f),所以 R [ Im ⁡ ( f ) ] ⊆ Im ⁡ ( f ) R\left[ \operatorname{Im}\left( f \right) \right]\subseteq \operatorname{Im}\left( f \right) R[Im(f)]Im(f)

Hw13:陈述模态射基本定理。

  1. f : M → M ′ f:M\to M' f:MM是一个模态射,则 Ker ( f ) ◃ M \text{Ker}\left( f \right)\triangleleft M Ker(f)M,且 ∃ f ‾ : M / Ker ( f ) → M ′ \exists \overline{f}:M/\text{Ker}\left( f \right)\to M' f:M/Ker(f)M,使得以下的图交换:
    在这里插入图片描述
    注:
    其中映射 P P P可取 P : M → M / K e r ( f ) m → m K e r ( f ) P:\begin{matrix} M & \to & M/Ker\left( f \right) \\ m & \to & mKer\left( f \right) \\ \end{matrix} P:MmM/Ker(f)mKer(f) f ‾ \overline{f} f 可取 f ‾ : M / K e r ( f ) → M ′ m K e r ( f ) → f ( m ) \overline{f}:\begin{matrix} M/Ker\left( f \right) & \to & M' \\ mKer\left( f \right) & \to & f\left( m \right) \\ \end{matrix} f:M/Ker(f)mKer(f)Mf(m)
    由于 K e r ( f ) ◃ M Ker\left( f \right)\triangleleft M Ker(f)M,所以 M / K e r ( f ) M/Ker\left( f \right) M/Ker(f)是一个群,且在博客《群态射,环态射,域态射》中的“群态射例子”部分已证明 P P P也是一个群态射。
    此外 f ‾ \overline{f} f也是一个群态射,还存在群同构 M / K e r ( f ) ≅ Im ⁡ ( f ) ⊆ M ′ M/Ker\left( f \right)\cong \operatorname{Im}\left( f \right) \subseteq M' M/Ker(f)Im(f)M

  2. N ◃ M ,   S < M N\triangleleft M,\text{ }S<M NM, S<M,则 S N < M ,   S ⋂ N ◃ S SN<M,\text{ }S\bigcap N\triangleleft S SN<M, SNS,且: S N / N ≅ S / ( S ⋂ N ) SN/N\cong S/\left( S\bigcap N \right) SN/NS/(SN)(这里的 ≅ \cong 是存在群同构(双射群态射)的意思,下同);

  3. N ◃ M N\triangleleft M NM,则 M / N M/N M/N的所有(正规?)子群均形如 K / N K/N K/N ( N ◃ K < M ) \left( N\triangleleft K<M \right) (NK<M),且
    K / N ◃ M / N   ⇔   K ◃ M K/N\triangleleft M/N\text{ }\Leftrightarrow \text{ }K\triangleleft M K/NM/N  KM,此时我们有: ( M / N ) / ( K / N ) ≅ M / K \left( M/N \right)/\left( K/N \right)\cong M/K (M/N)/(K/N)M/K

Hw14:证明 F r a c ( R ) Frac\left( R \right) Frac(R)是一个域,且 R R R

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值