生信分析-TBtools绘制热图

本文介绍了数据可视化中的一些关键概念,包括配色方案的选择、数据标准化处理、离散色阶的应用、行列注释的添加、面积映射大小的调整以及着色指定的方法。特别强调了准备颜色指定文件的步骤,用于创建组合热图。通过标准化后的颜色方框,读者可以更直观地理解数据变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

补充(来源公众号生信石头)

在这里插入图片描述

配色

在这里插入图片描述
在这里插入图片描述

数据标准化

在这里插入图片描述
在这里插入图片描述

离散色阶

在这里插入图片描述在这里插入图片描述

行列注释

在这里插入图片描述

面积映射大小

在这里插入图片描述
在这里插入图片描述

着色指定

准备一个颜色指定的文件,文件有两列列,第一列是gene,第二列是RGB的颜色代码,三个代码用英文逗号隔开
在这里插入图片描述

组合热图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

圆圈是原始数值,方框颜色是标准化后的

### 使用 TBTools 创建或分析聚类 TBTools 是一款专为物学研究设计的强大工具集,适用于基因组浏览器、序列比对以及多种生物信息学分析。对于创建和分析聚类而言,虽然官方文档并未直接提及具体操作步骤[^1],但基于该平台强大的数据处理能力和可视化功能,可以通过以下方式间接实现: #### 数据准备 为了在 TBTools 中构建有效的聚类,首先需要准备好适合输入的数据矩阵文件。通常情况下,这会是一个表格形式的文本文件,其中每一列表示一个样本,每行代表不同的特征(如基因表达水平),并且数值表示具体的测量值。 #### 导入数据至 TBTools 启动 TBTools 后,在主界面选择相应的模块加载上述准备好的数据文件。确保选择了正确的分隔符来解析文件结构,并确认所有必要的元数据都已正确关联。 #### 构建 一旦数据成功导入,便可以在 TBTools 提供的各种插件和服务中寻找合适的选项来进行绘制。尽管 TBTools 主要聚焦于其他类型的生物信息学任务,其内置的支持 R 脚本执行环境允许用户调用外部库完成复杂成工作。因此,如果希望利用像 `pheatmap` 或者 `gplots::heatmap.2()` 这样的高级绘方法,则可通过编写自定义脚本来达成目标[^2]。 ```r library(pheatmap) # 假设 data_matrix 已经被读取成 R 对象 result <- pheatmap(data_matrix, clustering_distance_rows="euclidean", clustering_method="complete") ``` 此代码片段展示了如何通过嵌入式的 R 控制台运行一段简单的 `pheatmap` 函数调用来快速获得带有层次聚类效果的展示。当然,实际应用时可能还需要调整更多的参数设置以满足特定需求。 #### 解析与评估结果 当完成后,仔细观察颜色模式及其背后所反映出来的潜在规律非常重要。注意不同样品间的相似性和差异性;同时也要关注任何异常点的存在与否。此外,还可以借助 TBTools 自带的一些统计测试工具进一步验证所得结论的有效性。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值