games101 学习笔记01

向量

向量定义

一种既有方向又有大小的量;可以表示为a或者 a ⃗ \vec {a} a ;没有绝对的起点。

向量标准化

向量的长度被记做 ∣ ∣ a ⃗ ∣ ∣ ||\vec a|| a ,单位向量为 a ⃗ \vec a a / ∣ ∣ a ⃗ ∣ ∣ ||\vec a|| a

向量乘法

  • 点乘 a ⋅ b = ∣ ∣ a ⃗ ∣ ∣ ∣ ∣ b ⃗ ∣ ∣ cos ⁡ θ a\cdot b = ||\vec a|| ||\vec b|| \cos \theta ab=a b cosθ

  • 叉乘 $|a \times b| = ||\vec a|| ||\vec b|| \sin \theta\$

图形学中的点和向量

因为笛卡尔坐标无法表示平移变换,我们通常用齐次坐标表示点和向量,就是增加一维,点的最后一维为0,点为0。

这样可以做到向量和向量的和仍为向量,点和点的差为向量,点和向量的和为点。(点和点的和一般为两点的中点)。

  • 缩放

    沿x,y方向缩放sx,sy。
    S ( s x , s y ) = ( s x 0 0 0 s y 0 0 0 1 ) \text S(s_x,s_y) = \begin{pmatrix} s_x &0 &0\\ 0 &s_y &0\\ 0 &0 &1 \end{pmatrix} S(sx,sy)=sx000sy0001

  • 旋转

    逆时针绕(0,0)旋转 α \alpha α,旋转矩阵为正交阵。
    R ( α ) = ( cos ⁡ a − sin ⁡ a 0 sin ⁡ a cos ⁡ a 0 0 0 1 ) R(\alpha) = \begin{pmatrix} \cos a &-\sin a &0\\ \sin a &\cos a & 0\\ 0 &0 &1 \end{pmatrix} R(α)=cosasina0sinacosa0001

  • 平移

    沿x,y方向平移tx,ty。
    T ( t x , t y ) = ( 1 0 t x 0 1 t y 0 0 1 ) \text T(t_x,t_y) = \begin{pmatrix} 1 &0 &t_x\\ 0 &1 &t_y\\ 0 &0 &1 \end{pmatrix} T(tx,ty)=100010txty1

变换的组合

变换不可交换顺序,就和矩阵的乘法不满足交换律一样。如果绕某一点c进行旋转,就必须先把c点平移到原点,旋转后做平移的逆

变换。注意变换是左结合性,要满足矩阵乘法性质。
( x 1 y 1 0 ) = T ( c ) R ( θ ) T ( − c ) ( x y 0 ) \begin{pmatrix} x_1\\ y_1\\ 0 \end{pmatrix} = \text T(c)\text R(\theta)\text T(-c) \begin{pmatrix} x\\ y\\ 0 \end{pmatrix} x1y10=T(c)R(θ)T(c)xy0

逆变换

如果复杂变换不好求,就用结果状态做的变换退回到初始状态的矩阵求逆。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值