CNN 分类 MNIST 数据集

本文档详细介绍了如何使用PyTorch构建和训练一个CNN模型,以分类MNIST数据集。从下载数据到搭建网络,再到训练过程和结果展示,包括在CPU和GPU上的运行对比。
摘要由CSDN通过智能技术生成

目录

1. 下载和加载数据

2. 可视化图像

2.1 显示单个图像

2.2 显示一个 batch 的图像

3. 搭建CNN网络

4. train 

4.1 实例化

4.2 网络训练

4.3 测试集验证

5. main 程序入口

6. 完整代码


1. 下载和加载数据

先看看需要的库文件

其中 pytorch 里面的 torchvision 提供了一些常用的数据,这里简单的预处理后,可以直接进行加载数据

下载的数据保存在root里面,这里就是mnist文件夹下

通过len函数,可以显示样本的数目,这里trainSet是整个训练数据,所以是6w,而trainLoader会根据batch_size返回多少个批次,所以这

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ai 医学图像分割

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值