无偏估计篇 第一站 车次表

无偏估计(Unbiased Estimator)

什么叫做无偏呢?如同它的名字一样,就是没有偏差。但到底是什么没有偏差呢?
设想这样一个情形,一个漫展上有一个抽奖活动,有放回的抽出彩球。
在这里插入图片描述
我想知道我有多大概率抽到一等奖,因此我信自己的欧气一回,拿出30块钱交给小姐姐,开始我的单发时刻。



然后,果然,没中奖。。。。
然后我心里有个小人会来咒骂的说,这里估计就没一等奖的球!这时,其实我就是在根据我一次抽奖的结果来估计一等奖的概率,那这样看我的估计肯定是有偏差的啊,那怎么叫无偏呢?

我不服,然后决定把一个月生活费全砸进去来估计这个一等奖概率,然后我就得到了更多的样本,从原先只有 X 1 X_1 X1,到现在有了 X 2 , X 3 , . . . , X n X_2,X_3,...,X_n X2,X3,...,Xn这些样本。根据大数定律,无论这个一等奖的概率 p p p是多少,我都会有:
1 n ∑ i = 1 n X i → E p [ X ] = p , a . e . \frac{1}{n}\sum_{i=1}^{n}X_i\to E_{p}[X]=p,a.e. n1i=1nXiEp[X]=p,a.e.

到这里,大家大致也能领会到无偏的含义了,无偏只是能保证我估计量在进行估计时不会产生系统误差,即是说我的估计有时候会偏高,有时候会偏低,但是误差的平均值为0。平均值这一点,只有在大量重复时才能体现出来。

下面给出无偏估计的具体定义:

定义: 设样本 X X X的分布依赖于参数 θ \theta θ θ \theta θ在参数空间 Θ \varTheta Θ内取值, g ( θ ) g(\theta) g(θ)是定义在 Θ \varTheta Θ上的已知函数(取实数或实向量为值), g ^ ( X ) \hat{g}(X) g^(X) g ( θ ) g(\theta) g(θ)的一个估计量。如果
E θ [ g ^ ( X ) ] = g ( θ ) , ∀ θ ∈ Θ E_{\theta}[ \hat{g}(X)]=g(\theta),\forall \theta \in \varTheta Eθ[g^(X)]=g(θ),θΘ
则称 g ^ ( X ) \hat{g}(X) g^(X) g ( θ ) g(\theta) g(θ)的一个无偏估计

无偏估计的意义

既然有的估计是无偏的,有的估计是有偏的,那我选择无偏估计有哪些好处呢?

其实无偏估计占据主要地位,主要是因为以下原因:
1.无偏性的要求往往只涉及一阶矩(均值),数学上方便处理。
2.人们的心理偏向。

实际情形中,有时无偏性是有好处的,有时并不是多好。

栗子
1.每次我根据无偏估计价格去买手办,有时候可能会亏,有时候可能小赚一把,但是从长期来看我是不赚不赔的。
2.每次我根据无偏估计量去做化学实验,因为每次都有些偏差,导致每次都不能成功。

车次表

无偏估计篇中,我们将会领略以下内容:

1.一致最小方差无偏估计(UMVUE)

2.零无偏估计法

3.充分—完备统计量法

4.C—R不等式法


文献参考:《数理统计学教程》(陈希孺)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值