实现数学函数

88 篇文章 36 订阅 ¥19.90 ¥99.00
本文介绍了在FPGA中实现数学函数的方法,包括硬件除法的三种策略:乘法和移位、迭代除法以及Goldschmidt方法。详细讨论了Goldschmidt算法在流水线除法中的优势。此外,还探讨了泰勒和Maclaurin级数展开在硬件实现中的应用以及CORDIC算法在计算三角函数时的高效性。
摘要由CSDN通过智能技术生成

实现数学函数

在这里插入图片描述

1、硬件除法

除法与其他的算术操作不同,除法中定点操作不产生有限和可预测的定点结果。

1.1乘法和移位

乘法和移位的方法是解决除法问题最简单的方案,本质上等效于除数的逆相乘。
在这里插入图片描述
左乘右除
乘法和移位的方法是执行除法的方便方式,但是,只可以在除数按照规定的形式表示时利用。

1.2迭代除法

这个除法算法是一个属于一类数字递归方法的算法例子,迭代的方法一般称为逐步逼近的方法。
在这里插入图片描述
对于定点数的除法可以用一个比较器和一个减法单元来构造。采用这个结构,被除数被“归一化”为一个定点数值,必须小于两倍的除数,做到这一点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

傻童:CPU

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值