华中科技大学发布的视觉新颖架构,Vision Mamba

https://github.com/hustvl/Vim

结构图:

小结:文章

致力于解决计算机视觉领域中,特别是在处理高分辨率图像时,Transformer架构存在的计算效率和内存使用上的限制问题。尽管Transformer在视觉表示学习上取得了显著成果,但由于自注意力机制在处理长距离依赖时具有二次时间复杂度和较高的内存消耗,使得在大规模高分辨率图像理解任务上面临挑战。

创新点在于:

  1. 提出了一种名为“Vision Mamba”(Vim)的新颖视觉骨干网络结构,该结构纯粹基于双向状态空间模型(SSM),尤其是借鉴了Mamba模型的硬件感知设计。Vim摒弃了自注意力机制,利用带有位置嵌入的双向选择性状态空间对视觉上下文进行有效压缩建模,并通过位置嵌入提供空间信息以增强位置敏感性识别能力。

  2. Vim是首个纯SSM基线模型成功应用于密集预测任务,如语义分割、目标检测和实例分割等,并且与现有的典型视觉Transformer模型DeiT相比,在ImageNet分类任务上表现出更高的性能,同时在处理大尺寸图像时速度更快,GPU内存占用更少。例如,对于分辨率为1248×1248的图像,Vim在批量化特征提取时比DeiT快2.8倍,并节省了86.8%的GPU内存。

  3. 通过将Mamba中高效的状态空间模型方法引入计算机视觉,Vim不仅保留了Transformer风格模型对大规模无监督预训练和多模态应用友好的优点,而且克服了处理长序列时的计算和内存约束,为下一代视觉基础模型提供了可能的后端结构。

Vision Mamba 是一个专注于提高计算机视觉任务性能的新型模型,相比传统Transformer架构,在速度和内存使用上有所改进。此模型由华中科技大学、地平线机器人及北京人工智能研究院的研究团队共同开发。 对于希望深入了解 Vision Mamba 并将其应用到实际项目中的开发者来说,可以参考如下资源和技术细节: 1. 论文《Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model》提供了关于双向状态空间模型的技术背景以及如何用于有效学习视觉表示的信息。这篇论文探讨了Vision Mamba相对于Transformers的优势,并解释了其工作原理。 2. 对于想要在本地环境中设置并调试Vision Mamba项目的开发者而言,有教程介绍了怎样借助PyCharm IDE来进行分布式命令设备上的调试过程,特别是针对Windows WSL2环境下的配置指南。这包括了将控制台命令形式传递给Pycharm的方法,以便更好地理解内部代码运作机制。 3. 社区讨论方面,CSDN技术社区有关于Vision Mamba的文章分享,其中不仅描述了该模型的特点——比如速度快出2.8倍且节省高达87%的内存消耗——还提到了它被设计用来超越传统的Transformer结构。此外,还有结合LSTM神经网络创建名为VMRNN(Vision Mamba RNN)的新颖框架的例子,专门用于处理需要长时间依赖性的数据集,例如视频序列预测。 这些资料可以帮助有兴趣探索或实施Vision Mamba解决方案的专业人士获得必要的理论基础与实践指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CV缝合怪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值