小罗碎碎念
今天上午的一期推文总结了病理组学领域常用的32个公开数据集,本着一鼓作气的念头,吃完中饭以后把影像组学的51个公开数据集补上。
影像组学的公开数据集相对于病理组学来说,会稍微多一些,并且分类更细致。为了方便展示,我会按照肿瘤和非肿瘤的器官来划分。
同样,为了不影响大家的阅读,我会把51个数据集的名字和类型都列出来,完整版的Excel表格我会上传至知识星球,大家按需自取。
一、肿瘤相关数据
表格汇总
数据集 | 类型 |
---|---|
LiTS | 肝脏/肝脏肿瘤 |
3D-IRCADb | 肝脏/肝肿瘤 |
StructSeg2019 | 鼻咽癌/肺癌 |
QIN Lung CT | 非小细胞肺癌 |
4D-Lung | 非小细胞肺癌 |
NSCLC-Radiomics | 非小细胞肺癌 |
vessel12 | 肺部血管分割 |
LIDC-IDRI | 肺部肿瘤 |
Data Science Bowl 17 | 肺部肿瘤 |
Lung-PET-CT-Dx | 肺癌 |
CBIS-DDSM | 乳腺癌 |
QIN-BREAST | 乳腺癌 |
RIDER Breast MRI | 乳腺癌 |
ACRIN-FLT-Breast | 乳腺癌 |
BRATS2013 | 脑肿瘤 |
BRATS2015 | 脑肿瘤 |
BRATS2021 | 脑肿瘤 |
Kits19 | 肾脏/肾肿瘤 |
CT COLONOGRAPHY | 结肠癌 |
QIN-PROSTATE-Repeatability | 前列腺癌 |
PDMR-833975-119-R | 胰腺癌 |
SIIM-ISIC | 皮肤癌 |
简要介绍
- LiTS (Liver Tumor Segmentation)
- 类型: 肝脏/肝脏肿瘤
- 简介: LiTS是一个肝脏肿瘤分割挑战,旨在促进肝脏和肿瘤分割方法的发展。数据集包含CT扫描图像和相应的肝脏及肿瘤分割标注。
- 3D-IRCADb
- 类型: 肝脏/肝肿瘤
- 简介: 3D-IRCADb是一个包含20名患者(10名女性和10名男性)的3D CT扫描数据库,其中75%的病例有肝肿瘤。数据集提供了肝脏大小、肿瘤位置等信息,并包含有挑战性的分割案例。
- StructSeg2019
- 类型: 鼻咽癌/肺癌
- 简介: StructSeg2019是一个自动结构分割挑战,旨在评估用于放射治疗计划的自动算法在分割鼻咽癌和肺癌的风险器官(OAR)和肿瘤体积(GTV)方面的性能。
- QIN Lung CT
- 类型: 非小细胞肺癌
- 简介: QIN Lung CT是一个包含非小细胞肺癌患者的CT扫描图像的数据集,用于研究和开发肺癌的计算机辅助检测和诊断方法。
- 4D-Lung
- 类型: 非小细胞肺癌
- 简介: 4D-Lung数据集包含20名局部晚期非小细胞肺癌患者在化疗期间的四维(4D)肺部成像数据,包括4D扇束CT和4D锥形束CT图像。
- NSCLC-Radiomics
- 类型: 非小细胞肺癌
- 简介: NSCLC-Radiomics数据集包含422名非小细胞肺癌患者的CT扫描图像,以及由放射肿瘤科医生手动勾画的肿瘤体积和临床结果数据。
- vessel12
- 类型: 肺部血管分割
- 简介: VESSEL12挑战赛比较了从CT图像中自动(和半自动)分割肺部血管的方法。数据集包含肺部CT扫描图像和血管分割的参考标准。
- LIDC-IDRI
- 类型: 肺部肿瘤
- 简介: LIDC-IDRI是一个包含大量肺部CT扫描图像的数据集,用于检测和分割肺结节。数据集包含600多名患者的CT扫描图像和专家对结节的标注。
- Data Science Bowl 17
- 类型: 肺部肿瘤
- 简介: Data Science Bowl 2017是一个数据科学竞赛,旨在通过分析CT扫描图像来检测和分割肺结节。
- Lung-PET-CT-Dx
- 类型: 肺癌
- 简介: Lung-PET-CT-Dx数据集包含用于肺癌诊断的大规模CT和PET/CT DICOM图像,以及XML注释文件,指示肿瘤位置。
- CBIS-DDSM
- 类型: 乳腺癌
- 简介: CBIS-DDSM是一个包含乳腺X线摄影图像的数据集,用于乳腺癌的检测和诊断研究。
- QIN-BREAST
- 类型: 乳腺癌
- 简介: QIN-BREAST数据集包含乳腺癌患者的MRI图像,用于研究和开发乳腺癌的计算机辅助检测方法。
- RIDER Breast MRI
- 类型: 乳腺癌
- 简介: RIDER Breast MRI数据集包含用于乳腺癌检测的MRI图像,以及相应的注释和分割信息。
- ACRIN-FLT-Breast
- 类型: 乳腺癌
- 简介: ACRIN-FLT-Breast数据集包含用于评估乳腺癌治疗反应的MRI图像。
- BRATS2013
- 类型: 脑肿瘤
- 简介: BRATS2013是一个脑肿瘤分割挑战,旨在促进脑肿瘤分割方法的发展。
- BRATS2015
- 类型: 脑肿瘤
- 简介: BRATS2015是继BRATS2013之后的另一个脑肿瘤分割挑战,提供了更多的数据和更复杂的分割任务。
- BRATS2021
- 类型: 脑肿瘤
- 简介: BRATS2021是最新的一届脑肿瘤分割挑战,提供了最新的数据集和分割任务。
- Kits19
- 类型: 肾脏/肾肿瘤
- 简介: Kits19是一个肾脏和肾肿瘤分割挑战,旨在促进肾脏肿瘤分割方法的发展。
- CT COLONOGRAPHY
- 类型: 结肠癌
- 简介: CT COLONOGRAPHY数据集包含用于结肠癌筛查的CT扫描图像。
- QIN-PROSTATE-Repeatability
- 类型: 前列腺癌
- 简介: QIN-PROSTATE-Repeatability数据集包含用于前列腺癌检测和分割的MRI图像。
- PDMR-833975-119-R
- 类型: 胰腺癌
- 简介: PDMR-833975-119-R数据集包含用于胰腺癌检测和分割的MRI图像。
- SIIM-ISIC
- 类型: 皮肤癌
- 简介: SIIM-ISIC是一个皮肤癌检测竞赛,旨在通过分析皮肤图像来检测恶性黑色素瘤。
二、头部&眼睛
表格汇总
数据集 | 类型 |
---|---|
Iseg2019 | 婴儿脑部MR |
ABIDE | 自闭症MR |
CQ500 | 头部CT |
RSNA | 颅内出血 |
DRIVE | 眼底照片 |
ODIR-5k | 眼底照片 |
fire | 视网膜图像 |
STARE | 眼底照片 |
IDRiD | 眼底照片 |
简要介绍
- iSeg-2019
- 类型: 婴儿脑部MR
- 简介: iSeg-2019是一个关于6个月大婴儿脑部MRI分割的MICCAI挑战赛。这个挑战旨在促进从多个站点获取的6个月大婴儿脑部MRI的自动分割算法的发展。数据集包含了多站点的婴儿脑部MRI图像,用于分割白质(WM)、灰质(GM)和脑脊液(CSF)。
- ABIDE
- 类型: 自闭症MR
- 简介: ABIDE(自闭症脑成像数据交换)是一个包含自闭症患者和对照组的脑部MRI数据集。它旨在通过大规模的脑成像数据来研究自闭症谱系障碍。
- CQ500
- 类型: 头部CT
- 简介: CQ500是一个包含491个头部CT扫描图像的数据集,用于训练和验证自动检测头部CT扫描中的出血、骨折和占位效应的深度学习算法。
- RSNA
- 类型: 颅内出血
- 简介: RSNA颅内出血检测是一个Kaggle竞赛,旨在通过分析头部CT扫描图像来检测颅内出血。
- DRIVE
- 类型: 眼底照片
- 简介: DRIVE数据库用于眼底图像中血管的分割研究。它包含了40张眼底图像,用于训练和测试眼底血管分割算法。
- ODIR-5k
- 类型: 眼底照片
- 简介: ODIR-2019是一个眼病智能识别竞赛,提供了5000张眼底照片,用于识别和分级多种眼病,如糖尿病视网膜病变、黄斑变性等。
- FIRE
- 类型: 视网膜图像
- 简介: FIRE是一个视网膜图像配准数据集,包含了129张视网膜图像,用于研究视网膜图像的配准和特征提取。
- STARE
- 类型: 眼底照片
- 简介: STARE(Structured Analysis of the Retina)项目是一个眼底图像分析项目,提供了约400张眼底图像和相关的临床数据,用于研究眼底图像中的血管分割、病变检测等。
- IDRiD
- 类型: 眼底照片
- 简介: IDRiD(印度糖尿病视网膜病变图像数据集)是一个用于糖尿病视网膜病变检测和分级的数据集,包含了糖尿病视网膜病变和糖尿病黄斑水肿的图像。
这些数据集涵盖了从婴儿脑部MRI到眼底照片的多种医学图像类型,广泛应用于医学图像分析、疾病检测和诊断的研究。
三、其余类型数据
表格汇总
数据集 | 类型 |
---|---|
Sliver07 | 肝脏 |
CHAOS | 肝/肾/脾 |
TCGA-LIHC | 肝 |
MSD | 多器官 |
LoLa11 | 肺 |
天池肺部CT | 肺 |
CheXpert | 胸部X光 |
NIHChest Xray | 肺 |
vessel12 | 肺部血管分割 |
LUNA16 | 肺结节 |
LNDB | 肺结节 |
Lung Nodule Malignancy | 肺结节良恶性 |
SIIM-ACR | 气胸 |
EchoNet | 超声心动图 |
MMWHS | 心脏分割 |
ASOCA | 冠状动脉分割 |
RSNA | 骨龄 |
MURA-1.1 | 骨骼 |
Verse | 脊椎 |
MRNet | 膝关节 |
SARAS-MESAD | 内窥镜 |
简要介绍
以下是您提供的数据集的详细介绍:
- SLIVER07
- 类型: 肝脏
- 简介: SLIVER07是一个肝脏分割竞赛,旨在比较不同的算法以从临床3D CT扫描中分割肝脏。
- CHAOS
- 类型: 肝脏/肾脏/脾脏
- 简介: CHAOS挑战赛旨在从CT和MRI数据中分割腹部器官(肝脏、肾脏和脾脏)。它包括五个竞赛类别,涉及肝脏和腹部器官的分割。
- TCGA-LIHC
- 类型: 肝脏
- 简介: TCGA-LIHC是癌症基因组图谱肝细胞癌数据集,提供了与癌症基因组图谱(TCGA)匹配的临床图像,包括CT、MR和PT图像。
- MSD (Medical Segmentation Decathlon)
- 类型: 多器官
- 简介: 医学分割十项全能挑战赛旨在通过开源大型医学成像数据集来测试机器学习算法的泛化能力,涵盖了多种不同的分割任务。
- LoLa11
- 类型: 肺部
- 简介: LOLA11挑战赛的目标是比较从胸部CT扫描中(半)自动分割肺部和肺叶的方法。
- 天池肺部CT
- 类型: 肺部
- 简介: 阿里云天池举办的一个关于肺部CT图像的竞赛,旨在提高肺部疾病检测的准确性和效率。
- CheXpert
- 类型: 胸部X光
- 简介: CheXpert是一个大型胸部X光数据集和竞赛,旨在自动化胸部X光图像的解释,提供了不确定性标签和放射科医生标记的参考标准评估集。
- NIHChest Xray
- 类型: 肺部
- 简介: NIH胸部X光数据集,包含大量胸部X光图像,用于研究和开发自动化的胸部X光图像分析算法。
- vessel12
- 类型: 肺部血管分割
- 简介: VESSEL12挑战赛比较了从CT图像中自动(和半自动)分割肺部血管的方法。
- LUNA16
- 类型: 肺结节
- 简介: LUng Nodule Analysis 2016挑战赛专注于在LIDC/IDRI数据集上大规模评估自动结节检测算法。
- LNDB
- 类型: 肺结节
- 简介: 肺结节检测和分割挑战赛,提供了一个用于训练和评估肺结节检测算法的数据集。
- Lung Nodule Malignancy
- 类型: 肺结节良恶性
- 简介: 这个数据集包含了肺结节的图像,用于研究和开发用于区分肺结节良性和恶性的人工智能算法。
- SIIM-ACR
- 类型: 气胸
- 简介: SIIM-ACR气胸分割竞赛,旨在通过分割胸部X光图像中的气胸区域来提高气胸检测的准确性。
- EchoNet
- 类型: 超声心动图
- 简介: EchoNet是一个用于心脏超声图像分析的公开数据集,提供了心脏结构的分割和定量分析。
- MMWHS
- 类型: 心脏分割
- 简介: 多模态心脏分割挑战赛,提供了用于心脏分割的多模态医学图像数据集。
- ASOCA
- 类型: 冠状动脉分割
- 简介: ASOCA挑战赛旨在分割冠状动脉CT血管造影图像中的冠状动脉。
- RSNA
- 类型: 骨龄
- 简介: RSNA骨龄预测竞赛,旨在通过分析手部X光图像来预测儿童的骨龄。
- MURA-1.1
- 类型: 骨骼
- 简介: Musculoskeletal Radiology (MURA)数据集,用于研究和开发用于骨骼X光图像分析的算法。
- Verse
- 类型: 脊椎
- 简介: 脊椎分割挑战赛,提供了一个用于训练和评估脊椎分割算法的数据集。
- MRNet
- 类型: 膝关节
- 简介: MRNet是一个用于膝关节MRI图像分析的数据集,旨在检测和分割膝关节中的病变。
- SARAS-MESAD
- 类型: 内窥镜
- 简介: SARAS-MESAD挑战赛旨在分割内窥镜图像中的病变区域,用于早期癌症检测。
这些数据集涵盖了从肝脏、肺部、心脏到骨骼等多个医学领域的图像数据,广泛应用于医学图像分析、疾病检测和诊断的研究。