数列极限<3>——实数系基本定理

实数系基本定理

确界存在定理

定义3.1 最大(最小)数

设集合 S S S为非空有限实数集,若 ∃ m ∈ S : ∀ x ∈ S \exists m \in S:\forall x\in S mS:xS, x ≥ m x\ge m xm,则称 m m m S S S的最小数,记为 m = max ⁡ S m =\max S m=maxS
设集合 S S S为非空有限实数集,若 ∃ M ∈ S : ∀ x ∈ S \exists M \in S:\forall x\in S MS:xS, x ≤ M x\le M xM,则称 m m m S S S的最大数,记为 M = min ⁡ S M =\min S M=minS

定义3.2 上(下)界

设集合 S S S为非空有限实数集,若 ∃ m ∈ R : ∀ x ∈ S \exists m \in \mathbb{R}:\forall x\in S mR:xS, x ≥ m x\ge m xm,则称 m m m S S S的一个下界, S S S的所有下界组成下界集 L L L
设集合 S S S为非空有限实数集,若 ∃ M ∈ R : ∀ x ∈ S \exists M \in \mathbb{R}:\forall x\in S MR:xS, x ≤ M x\le M xM,则称 m m m S S S的一个上界, S S S的所有上界组成上界集 U U U

定义3.3 上(下)确界

β = min ⁡ U \beta= \min U β=minU,即满足如此下条件:
(1) β \beta β是S的一个上界;
(2) β \beta β是S的最小上界,即 ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ x ∈ S \exists x\in S xS: x + ε > β x +\varepsilon >\beta x+ε>β
β \beta β x x x的上确界,记为 β = sup ⁡ S \beta =\sup S β=supS
α = max ⁡ L \alpha= \max L α=maxL,即满足如此下条件:
(1) α \alpha α是S的一个下界;
(2) α \alpha α是S的最大下界,即 ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ x ∈ S \exists x\in S xS: x − ε < α x -\varepsilon <\alpha xε<α
α \alpha α x x x的下确界,记为 α = inf ⁡ S \alpha =\inf S α=infS

戴德金分割

定义3.4 分割

设集合 A A A, B ⊂ R B\subset \mathbb{R} BR,满足条件: A ∪ B = R A\cup B=\mathbb{R} AB=R, A ∩ B = ∅ A\cap B=\varnothing AB=, A ≠ ∅ A\ne \varnothing A=, B ≠ ∅ B\neq \varnothing B=,且对所有的 a ∈ A a\in A aA, ∀ b ∈ B \forall b\in B bB,都有 a < b a<b a<b,则称 ( A , B ) \left ( A,B \right ) (A,B) R \mathbb{R} R的一个分割。

定理3.1 戴德金分割定理

对于 R \mathbb{R} R的任意分割,都存在唯一的 x ∗ ∈ R x^{\ast}\in \mathbb{R} xR,使得对所有的 a ∈ A a\in A aA,对所有的 b ∈ B b\in B bB,都有 a ≤ x ∗ ≤ b a\le x^{\ast } \le b axb

定理3.1 确界存在定理

非空有上界的实数集必有上确界,非空有下界的实数集必有下确界。
确界存在定理与戴德金分割定理等价,通常选择其一作为公理。

单调有界收敛定理

定理3.2 单调有界收敛定理

单调有界数列一定收敛。

根据确界存在定理,单调递增数列必有上确界,单调递减数列必有下确界。
以单调递增数列为代表,
设数列 { x n } \left \{ x_{n} \right \} {xn}单调递增且有上界,则 { x n } \left \{ x_{n} \right \} {xn}一定有上确界 β \beta β,
根据上确界定义,可知:
(1) ∀ n \forall n n, x n ≤ β x_{n}\le \beta xnβ;
(2) ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ n 0 : x n 0 > β − ε \exists n_{0}:x_{n_{0} }>\beta -\varepsilon n0:xn0>βε
N = n 0 N=n_{0} N=n0,则 ∀ ε > 0 \forall \varepsilon > 0 ε>0, ∃ N \exists N N: ∀ n > N \forall n> N n>N, x n > x n 0 x_{n}>x_{n_{0}} xn>xn0, ∣ x n − β ∣ < ε \left | x_{n} - \beta \right | < \varepsilon xnβ<ε,也就是 lim ⁡ n → ∞ { x n } = α \lim_{n \to \infty} \left \{ x_{n} \right \}=\alpha limn{xn}=α

闭区间套定理

定义3.5 闭区间套

若一系列闭区间 { [ a n , b n ] } \left \{ \left [ a_{n},b_{n} \right ] \right \} {[an,bn]}满足:
(1) [ a n , b n ] ⊂ [ a n + 1 , b n + 1 ] \left [ a_{n},b_{n} \right ] \subset \left [ a_{n+1},b_{n+1} \right ] [an,bn][an+1,bn+1];
(2) lim ⁡ n → ∞ ( a n − b n ) = 0 \lim_{n \to \infty} \left ( a_{n}-b_{n} \right ) =0 limn(anbn)=0;
则称 { [ a n , b n ] } \left \{ \left [ a_{n},b_{n} \right ] \right \} {[an,bn]}为闭区间套。

定理3.3 闭区间套定理

闭区间套 { [ a n , b n ] } \left \{ \left [ a_{n},b_{n} \right ] \right \} {[an,bn]}中一定存在属于任意 [ a n , b n ] \left [ a_{n},b_{n} \right ] [an,bn]的唯一的实数 ξ \xi ξ,且 lim ⁡ n → ∞ a n = lim ⁡ n → ∞ b n = ξ \lim_{n \to \infty} a_{n}=\lim_{n \to \infty} b_{n}=\xi limnan=limnbn=ξ

由闭区间套定义, a 1 ≤ a 2 ≤ ⋯ ≤ a n ≤ ⋯ ≤ b n ≤ ⋯ ≤ b 2 ≤ b 1 a_{1}\le a_{2} \le \cdots \le a_{n}\le \cdots \le b_{n } \le \cdots\le b_{2}\le b_{1} a1a2anbnb2b1,可知数列 { a n } \left \{ a_{n} \right \} {an}有上界 b 1 b_{1} b1且数列 { a n } \left \{ a_{n} \right \} {an}单调递增,
引用单调有界收敛定理,数列 { a n } \left \{ a_{n} \right \} {an}收敛,同理数列 { b n } \left \{ b_{n} \right \} {bn}也收敛。
设其极限为 ξ \xi ξ, lim ⁡ n → ∞ b n = lim ⁡ n → ∞ a n − ( a n − b n ) = lim ⁡ n → ∞ a n = ξ \lim_{n \to \infty} b_{n}=\lim_{n \to \infty} a_{n} -\left ( a_{n}-b_{n} \right )=\lim_{n \to \infty} a_{n}=\xi limnbn=limnan(anbn)=limnan=ξ
由构造方式, ξ \xi ξ既是数列 { a n } \left \{ a_{n} \right \} {an}的上确界,又是数列 { b n } \left \{ b_{n} \right \} {bn}的下确界,所以 ∀ [ a n , b n ] \forall \left [ a_{n},b_{n} \right ] [an,bn], a n ≤ ξ ≤ b n a_{n} \le \xi \le b_{n} anξbn
下证唯一性,可设另一个数 η \eta η也存在于任意 [ a n , b n ] \left [ a_{n},b_{n} \right ] [an,bn]中,则有 ∀ [ a n , b n ] \forall \left [ a_{n},b_{n} \right ] [an,bn], a n ≤ η ≤ b n a_{n} \le \eta \le b_{n} anηbn
引用迫敛性定理,则 lim ⁡ n → ∞ a n = lim ⁡ n → ∞ b n = η = ξ \lim_{n \to \infty} a_{n}=\lim_{n \to \infty} b_{n}=\eta=\xi limnan=limnbn=η=ξ

定理3.4 实数的不可数性

实数不可数。

反证法,设实数集合 R \mathbb{R} R可数,具体表现为所有实数可以从小到大排列成一列数列,并且下标集为自然数集 N \mathbb{N} N,已知闭区间 [ 0 , 1 ] \left [ 0,1 \right ] [0,1]与实数集等势,所以不妨将上文列出的实数数列一一对应到 [ 0 , 1 ] \left [ 0,1 \right ] [0,1]上,记为 { x n } = { x 1 , x 2 , … , x n , …   } ( ∀ n ∈ N , 0 ≤ x n ≤ 1 ) \left \{ x_{n} \right \}=\left \{ x_{1},x_{2},\dots ,x_{n},\dots \right \}(\forall n\in \mathbb{N},0\le x_{n}\le 1) {xn}={x1,x2,,xn,}(nN,0xn1),设;
执行以下流程:

  1. 将区间 [ a n , b n ] \left [ a_{n},b_{n} \right ] [an,bn]三等分为 [ a n , 2 a n + b n 3 ] \left [ a_{n},\frac{2a_{n}+b_{n} }{3} \right ] [an,32an+bn], [ 2 a n + b n 3 , 2 b n + a n 3 ] \left [ \frac{2a_{n}+b_{n} }{3},\frac{2b_{n}+a_{n} }{3} \right ] [32an+bn,32bn+an], [ 2 b n + a n 3 , b n ] \left [ \frac{2b_{n}+a_{n} }{3},b_{n} \right ] [32bn+an,bn];
  2. 对应的实数 x n x_{n} xn最多只能出现在两个区间内(区间内或边界点),所以可以选取不包含 x n x_{n} xn的区间作为下一次循环的 [ a n + 1 , b n + 1 ] \left [ a_{n+1},b_{n+1} \right ] [an+1,bn+1];
  3. 循环上述流程。

经过上述流程,可构造闭区间套 [ a n , b n ] \left [ a_{n},b_{n} \right ] [an,bn]
根据闭区间套定理,必有 ∀ n ∈ N \forall n\in \mathbb{N} nN, ∃ ξ ∈ [ a n , b n ] \exists \xi \in \left [ a_{n},b_{n} \right ] ξ[an,bn],而根据构造闭区间套 [ a n , b n ] \left [ a_{n},b_{n} \right ] [an,bn]的方法, ξ ∉ { x n } \xi \notin \left \{ x_{n} \right \} ξ/{xn},数列 { x n } \left \{ x_{n} \right \} {xn}不可能包含所有实数,由此实数不可数。

致密性定理

定义3.6 子列

在数列 { x n } \left \{ x_{n} \right \} {xn}的下标中取一列单调递增的下标 n k n_{k} nk,对应的项 x n k x_{n_{k}} xnk组成子列 { x n k } ( x n k ≥ k ) \left \{ x_{n_{k}} \right \}(x_{n_{k}}\ge k) {xnk}(xnkk)

定理3.5 (Bolzano_Weierstrass定理)致密性定理

有界数列必有收敛子列。

设数列 { x n } \left \{ x_{n} \right \} {xn}有界, a 0 ≤ x n ≤ b 0 a_{0}\le x_{n} \le b_{0} a0xnb0
[ a 0 , b 0 ] \left [ a_{0},b_{0} \right ] [a0,b0]分为 [ a 0 , a 0 + b 0 2 ] \left [ a_{0},\frac{a_{0}+b_{0} }{2}\right ] [a0,2a0+b0], [ a 0 + b 0 2 , b 0 ] \left [ \frac{a_{0}+b_{0} }{2},b_{0} \right ] [2a0+b0,b0],由于至少有一个区间包含 { x n } \left \{ x_{n} \right \} {xn}中的无穷多项,所以将这个区间标记为 [ a 1 , b 1 ] \left [ a_{1},b_{1} \right ] [a1,b1],
如此重复以下流程:
(1)将 [ a n , b n ] \left [ a_{n},b_{n} \right ] [an,bn]分为 [ a n , a n + b n 2 ] \left [ a_{n},\frac{a_{n}+b_{n} }{2}\right ] [an,2an+bn], [ a n + b n 2 , b n ] \left [ \frac{a_{n}+b_{n} }{2},b_{n} \right ] [2an+bn,bn];
(2)至少有一个区间包含 { x n } \left \{ x_{n} \right \} {xn}中的无穷多项,将这个区间作为 [ a n + 1 , b n + 1 ] \left [ a_{n+1},b_{n+1} \right ] [an+1,bn+1];
无限循环后得到闭区间套 { [ a n , b n ] } \left \{ \left [ a_{n},b_{n} \right ] \right \} {[an,bn]},根据闭区间套定理,一定存在属于任意 [ a n , b n ] \left [ a_{n},b_{n} \right ] [an,bn]的唯一的实数 ξ \xi ξ,且 lim ⁡ n → ∞ a n = lim ⁡ n → ∞ b n = ξ \lim_{n \to \infty} a_{n}=\lim_{n \to \infty} b_{n}=\xi limnan=limnbn=ξ
从每个 [ a k , b k ] \left [ a_{k},b_{k} \right ] [ak,bk]中取出对应的 x n k x_{n_{k}} xnk,排列成子列 { x n k } \left \{ x_{n_{k}} \right \} {xnk},有 a k ≤ x n k ≤ b k a_{k}\le x_{n_{k}} \le b_{k} akxnkbk,
由三明治定理, lim ⁡ k → ∞ a k = lim ⁡ k → ∞ b k = lim ⁡ k → ∞ x n k = ξ \lim_{k \to \infty} a_{k}=\lim_{k \to \infty} b_{k}=\lim_{k \to \infty}x_{n_{k}}= \xi limkak=limkbk=limkxnk=ξ,即子列 { x n k } \left \{ x_{n_{k}} \right \} {xnk}收敛。

推论3.1

无界数列必有发散子列。

Cauchy收敛准则

定义3.6 基本列

若数列 { x n } \left \{ x_{n} \right \} {xn}满足:
∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ N : ∀ n \exists N:\forall n N:n, m > N m>N m>N, ∣ x n − x m ∣ < ε \left | x_{n}-x_{m} \right |<\varepsilon xnxm<ε
则称数列 { x n } \left \{ x_{n} \right \} {xn}为基本列。

定理3.7 Cauchy收敛准则

数列 { x n } \left \{ x_{n} \right \} {xn}收敛的充要条件是数列 { x n } \left \{ x_{n} \right \} {xn}为基本列。
<1>必要性
由数列极限定义, ∀ ε > 0 \forall \varepsilon > 0 ε>0, ∃ N 1 \exists N_{1} N1: ∀ n > N 1 \forall n> N_{1} n>N1, ∣ x n − a ∣ < ε 2 \left | x_{n} - a\right | < \frac{\varepsilon }{2} xna<2ε,
同理, ∀ ε > 0 \forall \varepsilon > 0 ε>0, ∃ N 2 \exists N_{2} N2: ∀ n > N 2 \forall n> N_{2} n>N2, ∣ x m − a ∣ < ε 2 \left | x_{m} - a\right | < \frac{\varepsilon }{2} xma<2ε
根据三角不等式, ∣ x n − x m ∣ ≤ ∣ x n − a ∣ + ∣ a − x m ∣ < ε \left | x_{n}-x_{m} \right |\le \left | x_{n} - a\right |+\left | a-x_{m} \right | < \varepsilon xnxmxna+axm<ε, { x n } \left \{ x_{n} \right \} {xn}为基本列。
<2>充分性
下证 { x n } \left \{ x_{n} \right \} {xn}有界
根据基本列定义, ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ N : ∀ n \exists N:\forall n N:n, m > N m>N m>N, ∣ x n − x m ∣ < ε 2 \left | x_{n}-x_{m} \right |<\frac{\varepsilon }{2} xnxm<2ε,取 m = N + 1 m=N+1 m=N+1, ε = 2 ε 0 \varepsilon =2\varepsilon _{0} ε=2ε0,则 ∣ x n − x N + 1 ∣ < ε 0 \left | x_{n}-x_{N+1} \right |<\varepsilon_{0} xnxN+1<ε0,
根据三角不等式, ∣ x n ∣ ≤ ε 0 + ∣ x N + 1 ∣ \left | x_{n} \right |\le \varepsilon_{0} +\left | x_{N+1} \right | xnε0+xN+1,
M = { x 1 , x 2 , … , x N , ε 0 + ∣ x N + 1 ∣ } M=\left \{ x_{1},x_{2},\dots, x_{N},\varepsilon_{0} +\left | x_{N+1} \right | \right \} M={x1,x2,,xN,ε0+xN+1},则有 ∣ x n ∣ < M \left | x_{n} \right |<M xn<M,数列 { x n } \left \{ x_{n} \right \} {xn}有界,
根据列紧性定理,数列 { x n } \left \{ x_{n} \right \} {xn}必有收敛子列 { x n k } \left \{ x_{n_{k}} \right \} {xnk},设 lim ⁡ k → ∞ x n k = ξ \lim_{k \to \infty} x_{n_{k}}=\xi limkxnk=ξ
根据基本列定义, ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ N : ∀ n \exists N:\forall n N:n, m > N m>N m>N, ∣ x n − x m ∣ < ε 2 \left | x_{n}-x_{m} \right |<\frac{\varepsilon }{2} xnxm<2ε,
n k ≥ k > N n_{k}\ge k>N nkk>N,则有 ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ N : ∀ n \exists N:\forall n N:n, m > N m>N m>N, ∣ x n − x n k ∣ < ε 2 \left | x_{n}-x_{n_{k}} \right |<\frac{\varepsilon }{2} xnxnk<2ε,
对不等式两边求 k k k趋近于正无穷大时的极限, x n x_{n} xn视为与 k k k无关的常量,
根据数列极限的保号性, ∣ x n − ξ ∣ ≤ ε 2 < ε \left | x_{n}-\xi \right |\le \frac{\varepsilon }{2}< \varepsilon xnξ2ε<ε,也就是 { x n } \left \{ x_{n} \right \} {xn}收敛。

  • 14
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值