高数打卡05

设 函 数 f ( x ) 连 续 且 恒 大 于 零 , 设函数f(x)连续且恒大于零, f(x)
F ( t ) = ∭ Ω ( t ) f ( x 2 + y 2 + z 2 ) d v ∭ D ( t ) f ( x 2 + y 2 ) d σ \begin{aligned} &F(t)=\frac{\iiint_{\Omega(t)} f\left(x^{2}+y^{2}+z^{2}\right) d v}{\iiint_{D(t)} f\left(x^{2}+y^{2}\right) d \sigma}\\ \end{aligned} F(t)=D(t)f(x2+y2)dσΩ(t)f(x2+y2+z2)dv
G ( t ) = ∬ D ( t ) f ( x 2 + y 2 ) d σ ∫ − t t f ( x 2 ) d x \begin{aligned} G(t)=\frac{\iint_{D(t)} f\left(x^{2}+y^{2}\right) d \sigma}{\int_{-t}^{t} f\left(x^{2}\right) d x} \end{aligned} G(t)=ttf(x2)dxD(t)f(x2+y2)dσ
其 中 Ω ( t ) = { ( x , y , z ) ∣ x 2 + y 2 + z 2 ≤ t 2 } , D ( t ) = { ( x , y ) ∣ x 2 + y 2 ≤ t 2 } . 其中\Omega(t)=\{(x,y,z)|x^2+y^2+z^2 \leq t^2\},D(t)=\{(x,y)|x^2+y^2 \leq t^2\}. Ω(t)={(x,y,z)x2+y2+z2t2},D(t)={(x,y)x2+y2t2}.
( 1 ) 讨 论 F ( t ) 在 区 间 ( 0 , + ∞ ) 内 的 单 调 性 ; (1)讨论F(t)在区间(0,+\infty)内的 单调性; (1)F(t)(0,+)
( 2 ) 证 明 当 t > 0 时 , F ( t ) > 2 π G ( t ) . (2)证明当t>0时,F(t)>\frac{2}{\pi}G(t). (2)t>0F(t)>π2G(t).
在这里插入图片描述
在这里插入图片描述

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值