【ZJU-Machine Learning】自编码器

提出

2006年是深度学习的起始年,Hinton在SCIENCE上发文,提出一种叫做自动编码机(Auto-encoder)的方法,部分解决了神经网络参数初始化的问题。
在这里插入图片描述

概念

参考:https://www.cnblogs.com/royhoo/p/Autoencoders.html

自编码器是一种能够通过无监督学习,学到输入数据高效表示的人工神经网络。输入数据的这一高效表示称为编码(codings),其维度一般远小于输入数据,使得自编码器可用于降维(特征提取器)。更重要的是,自编码器可作为强大的特征检测器(feature detectors),应用于深度神经网络的预训练。此外,自编码器还可以随机生成与训练数据类似的数据,这被称作生成模型(generative model)。比如,可以用人脸图片训练一个自编码器,它可以生成新的图片。

自编码器通过简单地学习将输入复制到输出来工作。这一任务(就是输入训练数据, 再输出训练数据的任务)听起来似乎微不足道,但通过不同方式对神经网络增加约束,可以使这一任务变得极其困难。比如,可以限制内部表示的尺寸(这就实现降维了),或者对训练数据增加噪声并训练自编码器使其能恢复原有。这些限制条件防止自编码器机械地将输入复制到输出,并强制它学习数据的高效表示。简而言之,编码(就是输入数据的高效表示)是自编码器在一些限制条件下学习恒等函数(identity function)的副产品。

一个自编码器接收输入,将其转换成高效的内部表示,然后再输出输入数据的类似物。自编码器通常包括两部分:encoder(也称为识别网络)将输入转换成内部表示,decoder(也称为生成网络)将内部表示转换成输出
在这里插入图片描述

正如上图所示,自编码器的结构和多层感知机类似,除了输入神经元和输出神经元的个数相等。在上图的例子中,自编码器只有一个包含两个神经元的隐层(encoder),以及包含3个神经元的输出层(decoder)。输出是在设法重建输入,损失函数是重建损失(reconstruction loss)。

由于内部表示(也就是隐层的输出)的维度小于输入数据(用2D取代了原来的3D),这称为不完备自编码器(undercomplete autoencoder)。

训练步骤

训练如下网络:
在这里插入图片描述
步骤1:先训练这个网络:(使用BP算法)
这个就是自编码器
在这里插入图片描述
在这里插入图片描述

步骤2:训练好第1层后,接着训练第二层:

第二层的输入并不是x,前一层输出的x被替换成了x1(下一层的输入)
在这里插入图片描述

在这里插入图片描述
步骤M:以此类推,训练好第M-1层后,接着训练第M层。
在这里插入图片描述
最后用BP对网络进行微调

在这里插入图片描述
这样,在训练后面的参数时,前面已经训练的参数被固定住了。
此外,通过自动编码机,进行了降维,有利于提高训练效率。

matlab代码讲解

1、test_for_dnn.m

…数据准备… ()
%create a net
dnn = nn_create([784,400,169,49,10]);

% train
dnn = dnn_train(dnn,train_x,train_y);
%adjust
dnn = dnn_adjust(dnn,train_x,train_y);
%test
[wrongs,success_ratio,dnn] = nn_test(dnn,test_x,test_y);

2、function dnn = dnn_train(dnn,train_x,train_y)

… 设置BATCH SIZE 等参数… ()
    for k = 1 : numel(dnn.size)- 2
        sae = sae_create([dnn.size(k),dnn.size(k+1)]);
        sae = sae_train(sae,option,train_x);
        dnn.W{k} = sae.W{1};
        dnn.b{k} = sae.b{1};
        sae = nn_predict(sae,train_x);
        train_x = sae.a{2}';
    end
    k = k + 1;
    nn = nn_create([dnn.size(k),dnn.size(k+1)]);
    nn = nn_train(nn,option,train_x,train_y);
    dnn.W{k} = nn.W{1};
    dnn.b{k} = nn.b{1};
end

3、 function sae = sae_create(SIZE)

 sae = nn_create([SIZE(1),SIZE(2),SIZE(1)]);

4、function sae = sae_train(sae,option,train_x)

   sae.encoder = 1;
    sae = nn_train(sae,option,train_x,train_x);
end
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ZJU-I型机械臂是一种由浙江大学机器人研究所开发的六自由度机械臂,具有高速、精度和可靠性等特点。机械臂的运动控制是机器人中的重要研究领域之一,其中点到点轨迹规划是机器人在运动过程中最基础和常用的一种方式,也是机械臂控制的核心问题之一。 点到点轨迹规划的目标是通过给定的起点和终点,计算出机械臂的运动轨迹,使机械臂在运动过程中满足机械臂轨迹的连续性、平滑性、可控性等要求。在过去的研究中,经典的点到点轨迹规划方法包括插值法、线性规划法、最小能量法等。 如果使用Python实现机械臂的点到点轨迹规划,可以采用Robotics Toolkit(简称robot)这个模块。robot模块提供了各种从轨迹规划、控制到仿真的功能,可用于ROS、Vrep、Webots等机器人仿真软件。使用robot模块,可以通过几行代码实现机械臂的点到点轨迹规划,例如: ``` from roboticstoolkit import robot from roboticstoolkit.robots import zju # 初始化机器人 zju_arm = robot.Robot('zju', zju.URDF) # 设定起点和终点 start = [0, 0, 0, 0, 0, 0] goal = [0, 1, 1, 0.5, 0, 0] # 计算机械臂的轨迹 path = zju_arm.get_trajectory(start, goal) # 控制机械臂运动到终点 zju_arm.move_to(goal) ``` 其中,`roboticstoolkit`和`roboticstoolkit.robots`都是导入的Python模块,`zju`是机械臂的URDF定义文件,`start`和`goal`是起点和终点的坐标,`get_trajectory()`函数会返回计算得到的机械臂轨迹,`move_to()`函数则控制机械臂运动到终点。 总之,使用Python实现ZJU-I型机械臂的点到点轨迹规划相对简单,只需要导入相应的模块,并根据需要设置机械臂的各种参数,即可轻松实现机械臂的控制。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值