【RAG 论文】Program-of-Thoughts(PoT)提示:让 LLM 生成 Python 代码来解决复杂的数字计算问题

论文:Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks
⭐⭐⭐⭐
TMLR 2023
Code:Program-of-Thoughts | GitHub

论文速读

文章提出了 PoT Prompting 方法,PoT 可以看作是 CoT(Chain-of-Thoughts)的改进,该方法通过生成 Python 程序代码来表达推理步骤,并通过 Python 解释器来执行这些代码从而完成计算,从而提高了数值推理任务的准确性和效率。论文在数学推理数据集和金融数据集上进行了实验,发现 PoT 比 CoT 更擅长解决这些复杂的计算推理问题。

文章展示了两种 PoT 方法:

  • Few-shot PoT prompting:通过 in-context learning 的思路,给出几个 exemplars(QA 示例)让 LLM 学会去生成代码
  • Zero-shot PoT prompting:直接通过文字提示的方法,让 LLM 去生成代码

PoT
上图是两种 PoT 思路的示例,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值