Scribble-Supervised Medical Image Segmentation

该文提出了一种基于草率标注的心脏分割方法,利用双分支网络和动态混合伪标签监督。模型包含一个编码器和两个解码器,通过Dropout实现特征扰动,增强编码器的特征提取能力。动态伪标签策略提高了标注精度。实验在ACDC数据集上进行,采用五折交叉验证,基础网络为UNET并应用多种数据增强技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Scribble-Supervised Medical Image Segmentation via Dual-Branch Network and Dynamically Mixed Pseudo Labels Supervision

摘要

  • 采用草率的分割标注
  • 心脏分割
  • 双分枝网络:一个编码器,两个解码器
  • 动态结合两个解码器的输出伪标签

方法

在这里插入图片描述

模型结构

在这里插入图片描述

  • Lpce是交叉墒损失(与随便标注的标签作损失)
  • 解码器是不同且独立的
  • 采用Dropout来进行特征扰动:类似于一致性正则化的作用,但这里是有监督学习,可以很好促进编码器提取特征的能力
  • PL为动态伪标签生成的公式:y1 和y2分别为两个输出,阿尔法是随机生成的(每次iter),作者说这种策略使得两个模型独立
  • 伪标签监督损失如下:y1 y2为输出的伪标签,PL为联合的伪标签
  • 最后更新参数
    在这里插入图片描述
    总的来说,这篇文章我觉得创新点主要在于他提升了伪标签的精度

实验

数据集:ACDC,100个病人,三分类任务
评估:五折交叉验证
实验细节:

  • 基本网络:UNET
  • dropout=0.5,并且在每个卷积块之前都使用
  • 采用随机旋转,随机flip,以及随机噪声扩大数据集
  • 网络输入为256x256
  • 训练的是二维模型,然后对3D数据进行预测
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值