Scribble-Supervised Medical Image Segmentation via Dual-Branch Network and Dynamically Mixed Pseudo Labels Supervision
摘要
- 采用草率的分割标注
- 心脏分割
- 双分枝网络:一个编码器,两个解码器
- 动态结合两个解码器的输出伪标签
方法
模型结构
- Lpce是交叉墒损失(与随便标注的标签作损失)
- 解码器是不同且独立的
- 采用Dropout来进行特征扰动:类似于一致性正则化的作用,但这里是有监督学习,可以很好促进编码器提取特征的能力
- PL为动态伪标签生成的公式:y1 和y2分别为两个输出,阿尔法是随机生成的(每次iter),作者说这种策略使得两个模型独立
- 伪标签监督损失如下:y1 y2为输出的伪标签,PL为联合的伪标签
- 最后更新参数
总的来说,这篇文章我觉得创新点主要在于他提升了伪标签的精度
实验
数据集:ACDC,100个病人,三分类任务
评估:五折交叉验证
实验细节:
- 基本网络:UNET
- dropout=0.5,并且在每个卷积块之前都使用
- 采用随机旋转,随机flip,以及随机噪声扩大数据集
- 网络输入为256x256
- 训练的是二维模型,然后对3D数据进行预测