基于Transformer的多实例学习在弱监督组织病理学图像分割中的应用

Transformer Based Multiple Instance Learning for Weakly Supervised Histopathology Image Segmentation

摘要

提出了一种新的用于组织病理学图像像素级分割的弱监督方法,该方法将Transformer引入MIL框架中,以捕获全局或长程相关性。Transformer中的多头自注意建立了实例之间的关系,解决了MIL中实例相互独立的缺点。此外,引入深度监督,以克服弱监督方法中注释的限制,更好地利用层次信息。在癌症数据集上的心脏状态结果表明,与其他弱监督方法相比,该方法具有优越性。
代码地址

本文方法

在这里插入图片描述
在MIL设置下,我们采用Swin Transformer编码器的前三级。在每个阶段,深度监督层都会产生可以被视为预测的副输出。此外,提出了一个融合层,以充分利用所有边输出的多尺度预测。

损失函数

在这里插入图片描述
总损失
在这里插入图片描述
详细可以看代码

实验结果

在这里插入图片描述
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值