深度学习基础知识干货 | 什么是few-shot learning

本文概述了深度学习中的关键概念和技术,包括多模态大模型(如GroundingDINO和CLIP),以及基础模块如BatchNormalization和卷积计算。重点介绍了few-shot学习,元学习方法,以及用于评估的Omniglot和Mini-ImageNet数据集。此外,文中还分享了针对小样本学习的技巧,如好的初始化、熵正则化和余弦相似性等。
摘要由CSDN通过智能技术生成

🐧大模型系列篇章

💖 多模态大模型 🔎 GroundingDINO 论文总结
💖 端到端目标检测 🔎 从DETR 到 GroundingDINO 🔥
💖 多模态大模型 👉 CLIP论文总结
💖 多模态大模型 👉 EVA-CLIP
💚 生成模型 👉 从 VAE 到 Diffusion Model (上)
💚 生成模型 👉 从 VAE 到 Diffusion Model (下)🔥
💧 天气大模型

🐧深度学习基础知识篇

💖 深度学习基础知识干货 🔎 Batch Normalization 批量归一化
💖 深度学习基础知识干货 🔎 卷积模型的Memory, Params, Flop是如何计算的?
💖 深度学习基础知识干货 🔎 Cross-Entropy Loss 多分类损失函数
💖 深度学习基础知识干货 🔎 Videos 动作检测
💖 深度学习基础知识干货 🔎 目标检测(Object Detection): 你需要知道的一些概念
💖 深度学习基础知识干货 🔎 微调(fine-tuning)和泛化(generalization)
💖 深度学习基础知识干货 🔎 Group Convolution / Depthwise Convolution 轻量模型的必有的卷积
💖 深度学习基础知识干货 🔎 Gradient checkpointing
💖 深度学习基础知识干货 🔎 Softmax中温度(temperature)参数
💖 深度学习基础知识干货 🔎 什么是few-shot learning

欢迎订阅专栏,第一时间掌握最新科技
大模型系列篇章 专栏链接
深度学习基础知识 专栏链接

什么是few-shot learning

  • Few-shot learning is a kind a meta learning
  • meta learning: learn to learn

与传统监督算法的不同

  • 传统监督算法:要求模型识别训练数据,并且泛化到测试数据。
  • meta learning的目标是自己学会学习。

教小朋友判断动物的异同,就是元学习。具备了这个能力之后。

给小朋友support set让他自己去学习,
他有能力把support set与query对应起来。

few-shot learning 预测的是新的类别,没见过
而监督学习训练的时候是见过这个类别的。

few-shot learning通过对比support set 与 Query的相似度 来判断是什么类别

few-shot leaning 术语

  • k-way: the support set has k classes
  • n-shot: every class has n samples

3-way is easier than 6-way

学一个函数来判断相似度

  1. 从一个很大的训练集上学习相似度函数(它可以判断两张图片的相似度有多高)
  2. 训练结束之后,可以用训练得到的相似度函数进行预测

meta learning的标准数据集:评价模型的表现

  1. Ominiglot:1600 class 20 sample
    50 个字母表 字母

50 个字母表:拉丁语,希腊语。。。
每个字母表有很多字符:希腊语(24个)字符
每个字符由20个人手写。
每个样本是105x105的小图片

训练集一共有30个字母表, 包含946个字符(类别),总共19280个样本
测试机一共有20个字母表,包含659个类别,总共有13180个样本

  1. Mini-ImageNet
    100个类别:每个类别有600个样本。 84x84的小图片。

使用

思想:在大规模数据集上做预训练,在小规模的support-set做fine-tune

操作:
把query 和 support set 中的图片都映射成特征向量, 比较他们在特征空间上的相似度。
在support set 上学习W,b 进行fine-tuning.
用cross Entropy来衡量yj 与 pj的差别有多大。
support set中的每个样本都对应一个cross entropy loss, 把这些cross entropy loss 加起来,作为目标函数。也就是说我们用suuport set里面所有图片和标签 来学习这个分类器。让目标函数做minimization,让预测pj尽量接近真实标签yj

support set太少了,最好加一个regularization 来防止过拟合

Trick 1: A Good Initialization

  • Prediction made by Softmax classifier: 我们想要从support set中学习这样一个softmax分类器
    p = softmax(w.f(x) + b) 矩阵W和向量b是分类器参数 参数的初始化很重要,set中的样本数量太少了
    可以把W初始化为矩阵M,把b初始化为全零向量

Trick 2: Entropy Regularization

  • Entropy: 衡量概率分布p的信息量
  • 对于每一个query,求出一个entropy,然后再取平均
  • 我们希望Entropy Regularization 越小越好,这样置信度高的很高,低的很低

Trick 3: Cosine Similarity + Softmax Classifier

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值