傅里叶变换的定义

傅里叶变换的定义

傅里叶变换

非周期转换周期函数

假设要确定非周期函数p(t)的傅里叶变换

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

                 非周期函数

考虑所示周期函数 f(t),该函数一个周期内的形状与p(t)相同

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

                             T增至无穷大,使的f(t)变为上图的非周期函数
  • 如果令周期T→∞,则相邻的脉冲均被移至无穷远处,所以仅剩下单个宽度为τ的脉冲,如上图的非周期函数
  • 因此,函数f(t)不再是周期函数。即当T→∞时,f(t)=p(t)

傅里叶变换

下面讨论A=10,τ=0.2时f(t)的频谱。下图给出了T增大对频谱的影响

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 首先,可以看出,频谱的基本形状保持不变,包络第一个零点对应的频率同样保持不变
  • 然而,频谱的振幅和相邻分量之间的间距均随T的增大而减小,同时谐波的数目随之增多
  • 因此,在信号频率范围内,谐波的振幅之和几乎保持不变
  • 由于在一个频带范围内,各分量的总能量保持不变,谐波幅度必须随着T增加而减小
  • 因为f=1/T,随着T增加,f或ω减小,从而使得离散频谱最终成为连续频谱

傅里叶变换推导

推导

  • 傅里叶变换推导

    为了进一步理解非周期函数与其对应的周期函数之间的关系,考虑式中指数形式的傅里叶级数,即:

    f ( t ) = ∑ n = − ∞ ∞ c n e j n ω 0 t \color{red}{f(t)=\sum_{n=-\infty}^\infty c_ne^{jn\omega_0t}} f(t)=n=cnejnω0t

    其中:

    c n = 1 T ∫ − T / 2 T / 2 f ( t ) e − j n ω 0 t d t \begin{aligned}c_n&=\frac{1}{T}\int_{-T/2}^{T/2}f(t)e^{-jn\omega_0t}dt\end{aligned} cn=T1T/2T/2f(t)ejnω0tdt

    基频是:

    ω 0 = 2 π T {\omega_0=\frac{2\pi}T} ω0=T2π

    相邻谐波频率之间的间隔为:

    Δ ω = ( n + 1 ) ω 0 − n ω 0 = ω 0 = 2 π T {\Delta\omega=(n+1)\omega_0-n\omega_0=\omega_0=\frac{2\pi}T} Δω=(n+1)ω0nω0=ω0=T2π

    将c n _n n带入f(t)得:

    f ( t ) = ∑ n = − ∞ ∞ [ 1 T ∫ − T / 2 T / 2 f ( t ) e − j n ω 0 t d t ] e j n ω 0 t f(t)=\sum_{n=-\infty}^{\infty}\left[\frac{1}{T}\int_{-T/2}^{T/2}f(t)e^{-jn\omega_0t}dt\right]e^{jn\omega_0t} f(t)=n=[T1T/2T/2f(t)ejnω0tdt]ejnω0t

    = ∑ n = − ∞ ∞ [ Δ ω 2 π ∫ − T / 2 T / 2 f ( t ) e − j n ω 0 t d t ] e j n ω 0 t \begin{aligned}=\sum_{n{=}-\infty}^\infty\left[\frac{\Delta\omega}{2\pi}\int_{-T/2}^{T/2}f(t)e^{-jn\omega_0t}dt\right]e^{jn\omega_0t}\end{aligned} =n=[2πΔωT/2T/2f(t)ejnω0tdt]ejnω0t

    = 1 2 π ∑ n = − ∞ ∞ [ ∫ − T / 2 T / 2 f ( t ) e − j n ω 0 t d t ] Δ ω e j n ω 0 t ={\frac1{2\pi}\sum_{n=-\infty}^{\infty}\left[\int_{-T/2}^{T/2}f(t)e^{-jn\omega_0t}dt\right]\Delta\omega e^{jn\omega_0t}} =2π1n=[T/2T/2f(t)ejnω0tdt]Δωejnω0t

    令T→∞,求和变成积分,增量间隔∆ω变为微分增量dω**,**离散谐波频率nω ∗ ∗ o **_o o,**变为连续频率ω ∗ ∗ o **_o o,**因此,当T→∞时:

    ∑ n = − ∞ ∞ ⇒ ∫ − ∞ ∞ Δ ω ⇒ d ω n ω 0 ⇒ ω \begin{aligned}\sum_{n=-\infty}^{\infty}&\quad\Rightarrow\quad\int_{-\infty}^{\infty}\\\Delta\omega&\quad\Rightarrow\quad\mathrm{d}\omega\\n\omega_{_0}&\quad\Rightarrow\quad\omega\end{aligned} n=Δωnω0dωω

因此f(t),变为:

f ( t ) = 1 2 π ∫ − ∞ ∞ [ ∫ − ∞ ∞ f ( t ) e − j ω t d t ] e j ω t d ω f(t)=\frac1{2\pi}\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty}f(t)e^{{-j\omega t}}dt\right]e^{{j\omega t}}d\omega f(t)=2π1[f(t)etdt]etdω

上式中括号里的项叫做f(t)的傅里叶变换,表示为F(ω)。因此:

F ( ω ) = F [ f ( t ) ] = ∫ − ∞ ∞ f ( t ) e − j ω t d t \color{red}F(\omega)=\mathcal{F}[f(t)]=\int_{-\infty}^\infty f(t)e^{-j\omega t}dt F(ω)=F[f(t)]=f(t)etdt

  • 其中F是傅里叶变换算子
  • F(ω)是一个复函数。其振幅称为振幅频谱,相位称为相位频谱,F(ω)称为频谱

定义

傅里叶变换是f(t)从时域到频域的积分变换

傅里叶逆变换

f(t)可以用F(ω)来表示,得到傅里叶逆变换为:

f ( t ) = F − 1 [ F ( ω ) ] = 1 2 π ∫ − ∞ ∞ F ( ω ) e j ω t d ω \color{red}f(t)=\mathcal{F}^{-1}[F(\omega)]=\frac1{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{j\omega t}d\omega f(t)=F1[F(ω)]=2π1F(ω)etdω

函数f(t)及其傅里叶变换F(ω)构成傅里叶变换对:

f ( t ) ⇔ F ( ω ) f(t)\quad\Leftrightarrow\quad F(\omega) f(t)F(ω)

傅里叶变换条件

如果 F ( ω ) = F [ f ( t ) ] = ∫ − ∞ ∞ f ( t ) e − j ω t d t \color{red}F(\omega)=\mathcal{F}[f(t)]=\int_{-\infty}^\infty f(t)e^{-j\omega t}dt F(ω)=F[f(t)]=f(t)etdt中的傅里叶积分收敛,则其傅里叶变换F(ω)存在

f(t)存在傅里叶变换的充分但非必要条件是f(t)绝对可积:

∫ − ∞ ∞ ∣ f ( t ) ∣ d t < ∞ \color{red}{\int_{-\infty}^{\infty}\left|f(t)\right|dt<\infty} f(t)dt<

  • 例如,单位斜坡函数tu(t)就不存在傅里叶变换,因为该函数不满足上述条件
  • 为了避免傅里叶变换中出现复数运算,有时可以暂且将jω用s代替,最终再用jω将结果中的s换回

计算傅立叶变换

计算下列函数傅立叶变换

  • δ ( t − t 0 ) \delta(t-t_0) δ(tt0) e j ω 0 t e^{j\omega_0t} ejω0t cos ⁡ ω 0 t \cos\omega_0t cosω0t

该函数为冲激函数,其傅里叶变换为:

F ( ω ) = F [ δ ( t − t 0 ) ] = ∫ − ∞ ∞ δ ( t − t 0 ) e − j ω t d t = e − j ω t 0 \begin{aligned}F(\omega)&=\mathcal{F}[\delta(t-t_0)]=\int_{-\infty}^\infty\delta(t-t_0)e^{-j\omega t}dt=e^{-j\omega t_0}\end{aligned} F(ω)=F[δ(tt0)]=δ(tt0)etdt=et0

对于特情况t o _o o=0,有:

F [ δ ( t ) ] = 1 \mathcal{F}[\delta(t)]=1 F[δ(t)]=1

  • 这表明冲激函数频谱的振幅是一个常数,即在冲激函数的频谱中,所有频率的振幅均相同

如果令:

F ( ω ) = δ ( ω − ω 0 ) F(\omega)=\delta(\omega-\omega_0) F(ω)=δ(ωω0)

则可以利用傅里叶逆变换求出f(t),即:

f ( t ) = 1 2 π ∫ − ∞ ∞ δ ( ω − ω 0 ) e j ω t d ω   f(t)=\frac1{2\pi}\int_{-\infty}^{\infty}\delta(\omega-\omega_0)e^{j\omega t}d\omega  f(t)=2π1δ(ωω0)etdω 

使用冲激函数的筛选性质得:

f ( t ) = 1 2 π e j ω 0 t f(t)=\frac1{2\boldsymbol{\pi}}e^{j\boldsymbol{\omega}_0\boldsymbol{t}} f(t)=2π1ejω0t

由于 F(w)和f(t)组成傅里叶变换对,即:

F [ e j ω 0 t ] = 2 π δ ( ω − ω 0 ) \mathcal{F}[e^{j\omega_0t}]=2\pi\delta(\omega-\omega_0) F[ejω0t]=2πδ(ωω0)

傅立叶变换为:

F [ cos ⁡ ω 0 t ] = F [ e j ω 0 t + e − j ω 0 t 2 ] \mathcal{F}[\cos\omega_0t]=\mathcal{F}\left[\frac{e^{j\omega_0t}+e^{-j\omega_0t}}2\right] F[cosω0t]=F[2ejω0t+ejω0t]

= 1 2 F [ e i ω 0 t ] + 1 2 F [ e − i ω 0 t ] = π δ ( ω − ω 0 ) + π δ ( ω + ω 0 ) =\frac12\left.\mathcal{F}\left[\mathrm{e}^{\mathrm{i}\omega_0t}\right]+\frac12\left.\mathcal{F}\right[\mathrm{e}^{-\mathrm{i}\omega_0t}\right]=\pi\delta(\omega-\omega_0)+\pi\delta(\omega+\omega_0) =21F[eiω0t]+21F[eiω0t]=πδ(ωω0)+πδ(ω+ω0)

该余弦信号的傅里叶变换如下:

                                                                         的傅立叶变换

                                                                     $f(t)=\cos\omega_0t$的傅立叶变换

计算傅立叶变换

  • 求宽度τ ,高度为A的单矩形脉冲的傅里叶变换

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

                      矩形脉冲

F ( ω ) = ∫ − τ / 2 τ / 2 A e − j ω t d t = − A j ω e − j ω t ∣ − τ / 2 τ / 2 = 2 A ω ( e j ω τ / 2 − e − j ω τ / 2 2 j ) F\left(\omega\right)=\int_{-\tau/2}^{\tau/2}A\mathrm{e}^{-j\omega t}\mathrm{d}t=-\left.\frac A{j\omega}\mathrm{e}^{-j\omega t}\right|_{-\tau/2}^{\tau/2}=\frac{2A}\omega\left(\frac{\mathrm{e}^{j\omega\tau/2}-\mathrm{e}^{-j\omega\tau/2}}{2\mathrm{j}}\right) F(ω)=τ/2τ/2Aetdt=Aet τ/2τ/2=ω2A(2jeτ/2eτ/2)

= A τ sin ⁡ ω τ / 2 ω τ / 2 = A τ   s i n c   ω τ 2 =A\tau\frac{\sin\omega\tau/2}{\omega\tau/2}=A\tau\mathrm{~sinc~}\frac{\omega\tau}2 =Aτωτ/2sinωτ/2=Aτ sinc 2ωτ

如果令 A=10,τ=2,如图则有:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

F ( ω ) = 20   s i n c ω   F(\omega)=20\mathrm{~sinc}\omega  F(ω)=20 sincω 

其振幅频谱如图所示

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

                                     幅度谱

比较上图矩形脉冲和矩形脉冲频谱

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

可见矩形脉冲频谱的频谱是离散的,其包络与单个矩形脉冲的傅里叶变换的形状相同

计算傅立叶变换

  • 计算指数函数的傅里叶变换

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

由图可知:

f ( t ) = e − a t u ( t ) = { e − a t , t > 0 0 , t < 0 f(t)=e^{-at}u(t)=\begin{cases}e^{-at},&t>0\\0,&t<0\end{cases} f(t)=eatu(t)={eat,0,t>0t<0

因此:

F ( ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t d t = ∫ 0 ∞ e − a t e − j ω t d t = ∫ 0 ∞ e − ( a + j ω ) t d t \begin{aligned}F(\omega)&=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt&=\int_{0}^{\infty}e^{-at}e^{-j\omega t}dt&=\int_{0}^{\infty}e^{-(a+j\omega)t}dt\end{aligned} F(ω)=f(t)etdt=0eatetdt=0e(a+)tdt

= − 1 a + j ω e − ( a + j ω ) t ∣ 0 ∞ = 1 a + j ω =\left.\frac{-1}{a+j\omega}e^{-(a+j\omega)t}\right|_0^\infty=\frac1{a+j\omega} =a+1e(a+)t 0=a+1

  • 7
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值