【神经网络与深度学习-TensorFlow实践】-中国大学MOOC课程(一~二)(概述和TensorFlow2.0和2.4和GPU环境的安装和使用)

第0讲 课程概述

1、机器学习是人工智能一个重要分支
2、深度学习是机器学习一个分支
3、深度学习可以简单理解为深层次的神经网络

参考文献

[1] 神经网络与深度学习——TensorFlow实践

第1讲 人工智能的起源

1.1 人工智能的诞生

1.2 人工智能的发

1.3 机智过人or技不如人r

人工智能无所不在

第2讲 TensorFlow2.0和2.4

2.1 开发环境介绍

python+Tensorflow2.0+Anaconda

TensorFlow2.0 2019.06发布

2.2 Anaconda的下载与安装

自己去看视频https://www.icourse163.org/learn/XUST-1206363802?tid=1464103450#/learn/content?type=detail&id=1242446386&cid=1265479341&replay=true

如果实在懒得看,可以看别人的文字安装教程,不过我记得anaconda安装是自带pyhton版本的,并且会默认把你已经安装的pyhton版本覆盖,如果你想保留两个,网上有教程,但是这不影响使用,如果你第一个python版本下没有什么程序使用,我是因为之前安装pycharm装的,懒得删,出问题踢我https://blog.csdn.net/wq_ocean_/article/details/103889237

2.3 Hello,World(两种模式)

1、Python可以使用两种模式运行:交互模式和脚本模式

2、使用交互模式:在命令行窗口逐行输入代码并运行

a、打开ANACONDA NAVIGATOR
b、环境管理页面(左边的enbironments )
c、点击base(root) - open with python
进入python的交互编程模式
d、然后可以在 >>> 后输入python语句,可以执行python命令
每行代码,每行处理

e、退出使用quit()、exit()或者CTRL + Z

3、脚本模式:使用编辑器,将所有代码保存在python脚本文件中,统一运行。vs code

a、打开ANCONDA NAVIGATOR
b、通过主界面的工具栏,打开VSCode,在这里插句题外话,我下载的ANACONDA没有VSCode图标,解决方案请看2.4节。

c、打开VSCode资源管理菜单
在这里插入图片描述

d、点击添加文件夹,存放代码的文件夹,可以自己建一个
在这里插入图片描述

e、然后新建一个文件,叫做hello_world.py
在这里插入图片描述
f、然后就可以在该文件里编写python代码,之后使用CTRL+,必须保存不然不行
在这里插入图片描述

g、使用快捷键CTRL+~打开终端
在这里插入图片描述
h、在终端中使用python文件名的方式运行脚本文件

python hello_world.py

可以看到运行结果:
在这里插入图片描述
在脚本模式中只有有输出语句的才会有输出

2.3.5 关于ANACADA中没有VSCode图标的解决方案

需要先自行下载VSCode,有的话跳过下载,下载教程可以看下面这个链接(有VSCode中文配置)
https://blog.csdn.net/weixin_43883917/article/details/113867914

:如果你下载失败或者嫌弃官网下载速度缓慢,你可以尝试点击该链接下载:https://wwx.lanzoui.com/i2AAkmyrrmh

下载了VSCode可以直接参考下面这个教程
https://blog.csdn.net/qq_45089446/article/details/115526746

2.4 使用JupyterNotebook

1、通过网页访问的Web应用程序,在网页中编写和执行程序。

便于程序的远程访问

屏蔽了不同系统间的显示差异,便于代码共享。

2、不仅可以编辑和运行程序

将程序和文档整合在同一个文档中

代码、图像、注释、公式、图形、运行结果

代码保持在编辑器中的格式,且可以运行

能够以网页或幻灯片的形式分享。

3、实战演练

a、打开JupyterNoterbook,自当跳转到浏览器当中,并且打开默认目录,初次安装会跳转到C盘默认目录下,这种默认设置使用起来非常不方便。
在这里插入图片描述
b、在使用JupyterNoterbook之前,对其默认目录进行修改
(1)打开终端
(2)在终端中使用JupyterNoterbook命令,初次使用生成其配置文件,也可以找到其配置文件的路径

jupyter notebook --generate-config

在这里插入图片描述
(3)根据提示找到配置文件的路径,并找到文件,然后使用VSCode打开文件
请添加图片描述
在这里插入图片描述
(4)搜索包含dir的一个键值字符串
在这里插入图片描述
(5)取消注释,将其更改为你希望的一个目录,指定的路径必须包含有对应的文件夹,文件是自己创建的
在这里插入图片描述
然后验证:在所使用环境下中使用命令,出现如下就表示成功
在这里插入图片描述

(6)接下来返回Anaconda打开jupyternotebook,会看到一个新的网页(没有自带的各种包了)
(7)新建一个文件
在这里插入图片描述
(8)使用
CTRL+ENTER是运行
可以插入其他语法
(9)推荐一些jupyter的使用教程
环境配置
史上最详细、最完全的jupyter notebook使用教程,Python使用者必备!——ipython系列之三

使用教程
Jupyter Notebook 教程(入门与进阶

2.5 包管理和环境管理

1、包管理
a、安装、更新、卸载工具包
b、安装时能自动安装相应的依赖包

2、环境管理
a、在同一台机器上创建几个相互独立的python开发环境
b、隔离不同项目所需的不同版本的工具包
c、防止版本的冲突

3、包管理

a、在anaconda中使用conda命令进行python包管理。

conda安装包的语法为

conda install <package_names>

package_names必须是一个完整的包的名称,或者是多个完整包的名称。

conda卸载包的语法为

conda remove <package_names>

conda更新包的语法为

conda update <package_names>

记不清包的名称,使用模糊查询

conda search <text>

text是包含名称所有或者部分字符的字符串

也可以使用自带的pip工具进行包的管理,和conda不冲突,可以相互补充

pip安装包的语法为

pip install <package_names>

pip卸载包的语法为

pip uninstall <package_names>

4、conda环境管理

创建环境的语法为

conda create --name <env_name><package_names>

激活语法的环境为

activate <env_name>

推出环境的语法为

deactivate

删除环境的语法为

conda remove --name <env_name> --all

查看当前已经创建环境的基本信息

conda env list

2.6 安装TensorFlow2.0

1、创建独立环境并激活请添加图片描述

2、可视化安装
a、打开anaconda,切换到环境管理页面
请添加图片描述
当前只有一个base环境,这是anaconda默认的环境
b、可视化创建tensorflow2.0的独立的python环境
c、首先修改下载源
清华大学镜像源使用帮助https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
如果不会,下面2.4.0中有教

注:由于更新过快难以同步,我们不同步pytorch-nightly, pytorch-nightly-cpu, ignite-nightly这三个包。
d、在cmd中运行

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

e、打开anaconda,执行下面操作,然后耐心等待
在这里插入图片描述
下载好之后是这个样子
请添加图片描述
f、然后打开该命令行窗口
使用PPT上提供的命令安装相应的命令行模块包

pip install numpy matplotlib Pillow scikit-learn pandas -i https://pypi.tuna.tsinghua.edu.cn/simple

请添加图片描述
g、安装完成后,使用pip安装命令安装tensorflow2.0 -beta版本

pip install tensorflow==2.0.0-beta -i https://pypi.tuna.tsinghua.edu.cn/simple

请添加图片描述
请添加图片描述

2.6# 安装tensorflow2.4,我最终还是2.0

前提:安装anaconda2021.05版本 ,安装包可以去清华镜像网站自行下载ananconda清华镜像网站

其自带的python版本是

1、使用命令行安装tensorflow2.4的步骤为请添加图片描述
推荐第二部使用pip安装

1、使用anaconda用户界面安装
首先更改下载源,参考清华大学开源软件镜像站https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
2、在cmd中执行

conda config --set show_channel_urls yes

请添加图片描述

然后用记事本打开创建的文件,该文件在当前目录下可以找到,
将给出的代码复制到该文加下,保存

channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

然后回到anaconda环境管理界面,清理缓存教程没有执行,如果下载的慢再来执行

// 这是网址在视频录制中的做法,但是当我学习的时候已经变成了上述,所以这里在上述方法不可行时,我执行了视频中的方法,可行,记录了下来
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

conda config --set show_channel_urls yes

即可添加 Anaconda Python 免费仓库。

运行 conda clean -i 清除索引缓存,保证用的是镜像站提供的索引。

运行 conda install numpy 测试一下吧。
3、点击create创建,按照步骤执行
在这里插入图片描述
等到下方的滚动条消失就是环境创建完成

4、然后在该环境下,代开命令行窗口,接下来的操作就和命令行安装的2-3步骤一样
a、安装相应的python软件包

pip install numpy matplotlib Pillow scikit-learn pandas -i https://pypi.tuna.tsinghua.edu.cn/simple

b、然后使用pip安装Tensorflow2.4

pip install tensorflow==2.4.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

c、进入python模式,运行

import tensorflow

请添加图片描述

2.7 安装tensorflow-gpu=2.0.0

和上面一样重新创建一个环境,,从安装2.0的f步(把第f步换成下面的)开始按照下面执行,然后下载python包,只不过下载指令换成了

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow-gpu==2.0.0-alpha0

我不知道-alpha0干嘛的,但是参考的人家的就直接用了, 后面不行卸载再装

然后检验
接着输入python 进入python
先输入

import tensorflow as tf 

这个可以检测tensorflow安装好了没
再输入

tf.test.is_built_with_cuda() 

这个用来检测cuda 返回true或者false

tf.test.is_gpu_available() 

这个用来检测gpu 返回true或者false
如果两个都是true 那么gpu就安装好了
输入

tf.__version__

输出tensorflow版本号2.0.0
在输入

tf.test.is_gpu_available()

返回值为True,则安装正确

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 好的,我会用中文回复。2021年秋季mooc编程练习中,函数和指针是非常重要的主题。函数是程序中的基本模块,可以将代码分解为可重用的部分。指针是一种特殊的变量类型,它存储了一个变量的内存地址。在编程中,指针可以用于访问和修改变量的值,也可以用于动态分配内存。掌握函数和指针的使用方法,可以提高程序的效率和可维护性。 ### 回答2: 在编程中,函数和指针是非常重要的一部分。函数是一组代码,根据输入参数进行计算,并返回值。指针是一个变量,它存储了另一个变量的内存地址。在函数中使用指针可以有效地将数据传递给函数,以及从函数中返回数据。 在编程练习中,我们学习了如何定义函数、调用函数以及函数的参数和返回值的使用使用函数可以使我们避免重复的代码,并且可以更好地组织我们的代码。 在函数的参数中,我们可以使用指针来传递值和数组。使用指针可以减少内存的使用和传递数据的时间。在函数的返回值中,我们也可以使用指针来返回值。这是因为指针可以返回函数中定义的临时变量的值。 在编程中,指针的使用也是非常重要的。它们可以用来访问数组中的元素以及动态分配内存等。指针还可以用于实现数据结构算法,如链表、树等。 最后,我们还学习了如何使用指针来管理内存。在程序中,我们需要使用内存来存储变量和数据结构。使用指针可以帮助我们有效地管理内存,避免出现内存泄漏等问题。 总之,在编程练习中学习函数和指针是非常重要的。它们可以帮助我们写出更具有可维护性和可扩展性的代码。同时,在实际编程中,我们也需要不断地探索和学习更多的函数和指针的用法,以提高我们的编程技能和效率。 ### 回答3: 本次编程练习主要涉及到函数和指针的概念,以及如何将它们应用于实际编程中。 首先,函数可以理解为一段独立的代码块,它可以接受输入参数并返回一个输出结果。在编程中,通过定义函数来实现代码的模块化,提高代码的可读性和可维护性。函数的定义格式为:返回值类型 函数名(参数列表) {函数体}。其中,返回值类型可以是任何数据类型,包括自定义类型;参数列表可以为空,也可以有一个或多个参数,每个参数都包括参数类型和参数名;函数体中包含了实现具体功能的代码。 指针是C/C++语言中的一个重要概念,它可以用来存储内存地址。在函数中,指针可以作为参数来传递内存地址,可以避免大规模数据拷贝带来的开销。指针还可以通过解引用操作访问它所指向的内存区域,这在动态分配内存时特别有用。 在本次练习中,我们将运用函数和指针的知识来实现一些有趣的功能。 第一题:函数指针的使用 本题要求定义一个函数指针类型,以及一个使用函数指针类型作为参数的函数。函数指针类型的定义格式为:返回值类型 (*指针变量名)(参数列表);我们可以通过指针变量名来声明函数指针,通过*运算符来解引用指针。 第题:内存分配与释放 本题要求实现动态分配一段内存,并在之后释放该内存。在C/C++中,动态分配内存可以使用malloc()函数或new运算符,释放内存可以使用free()函数或delete运算符。需要注意的是,在使用完毕后要及时释放内存,否则会产生内存泄漏的问题。 第三题:与字符串有关的指针操作 本题要求实现一些与字符串有关的指针操作,包括字符串的拷贝、字符串的比较、字符串的连接等。在C/C++中,字符串是以字符数组的形式保存的,可以用指针来操作字符串。需要注意的是,在进行指针操作时要确保指针指向的内存区域是可用的,否则会产生段错误的问题。 总之,在编程中,函数和指针是两个非常重要的概念,掌握它们可以帮助我们更好地实现代码的模块化和优化。同时,我们要注意安全性和健壮性,避免指针操作带来的潜在问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

踏破万里无云

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值