💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
简单量子谐振子的基态是高斯函数。提升算子由有限差分算子构成,当作用于基态波函数时,会产生激发态。最后,将三个激发能级与基态一起绘制出来。为了简化,省略了所有常数,如m、ω或h bar。
使用提升算子计算量子谐振子的激发态研究文档
一、引言
量子谐振子是量子力学中的一个基本模型,广泛应用于描述各种物理系统。在量子力学中,谐振子的基态和激发态是通过求解薛定谔方程得到的。而提升算子(raising operator)作为一种数学工具,可以方便地用于计算谐振子的激发态。本文旨在探讨如何使用提升算子来计算量子谐振子的激发态,并简要介绍其理论基础和应用。
二、理论基础
-
量子谐振子的哈密顿量
-
量子谐振子的哈密顿量可以表示为:H=2mp2+21mω2x2
其中,p 是动量算符,m 是质量,ω 是角频率,x 是位置算符。
-
基态波函数
量子谐振子的基态波函数是高斯函数,形式为:
psi0(x)=(πℏmω)1/4exp(−2ℏmωx2)
-
提升算子
提升算子(raising operator)用于将谐振子的基态提升到激发态。在位置表象中,提升算子可以表示为:
a+=2mℏω1(−iℏdxd+mωx)
当提升算子作用于基态波函数时,会产生激发态波函数。
三、计算方法
-
定义基态波函数
首先,根据量子谐振子的基态波函数公式,定义基态波函数 ψ0(x)。
-
应用提升算子
然后,使用提升算子 a+ 作用于基态波函数 ψ0(x),得到第一激发态波函数 ψ1(x)。重复此过程,可以得到更高阶的激发态波函数 ψ2(x)、ψ3(x) 等。
注意:由于提升算子是微分算符和位置算符的线性组合,因此在数值计算中需要使用有限差分法或谱方法来近似微分运算。
-
归一化激发态波函数
每次应用提升算子后,得到的激发态波函数可能不再归一化。因此,需要对激发态波函数进行归一化处理,以确保其满足量子力学中的归一化条件。
四、结果展示
将计算得到的基态和激发态波函数绘制在同一坐标系中,可以直观地展示它们的波形和概率密度分布。通常,基态波函数是一个中心对称的高斯分布,而激发态波函数则具有更多的节点和更复杂的波形。
五、结论与展望
通过使用提升算子,我们可以方便地计算量子谐振子的激发态波函数,并深入了解其物理性质。未来,可以进一步探索提升算子在其他量子系统中的应用,以及如何利用提升算子来研究量子态的演化、量子纠缠等前沿问题。
📚2 运行结果
部分代码:
neg_one=-1.*ones(N,1);
pos_one=1.*ones(N,1);
X=spdiags(x,N,N);
DX=0.5.*(spdiags([neg_one pos_one ],[-1 1] ,N,N));
aplus=2.^(-0.5).*(X-DX); % Griffiths, p. 54, Eq. 2.47
%--- Using the raising operator to find excited states------------------%
psi1=(aplus)*psi0'; % first excited state
psi1=psi1-mean(psi1); % normalizing
psi1=(psi1./max(psi1));
psi2=aplus*psi1; % second excited state
psi2=psi2-mean(psi2);
psi2=psi2./max(psi2);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]王鹏,黄焱,任超,等.多尺度量子谐振子高维函数全局优化算法[J].电子学报, 2013, 41(12):2468-2473.DOI:10.3969/j.issn.0372-2112.2013.12.023.
[2]王鹏,黄焱,任超,等.多尺度量子谐振子高维函数全局优化算法[J].电子学报, 2013, 41(12):6.DOI:CNKI:SUN:DZXU.0.2013-12-023.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取