【论文笔记】Evaluating the Limits of a LiDAR for an Autonomous Driving Localization

【论文笔记】Evaluating the Limits of a LiDAR for an Autonomous Driving Localization

    ~~~          ~~~~     一般来说,在自动驾驶汽车中使用的基于LiDAR的定位解决方案需要昂贵的传感器和计算昂贵的制图过程。 此外,自主驾驶的全球定位正在向使用地图靠拢。降低成本的直接策略是生产更简单的传感器和使用互联网上已有的地图。这里提出了一个分析,以显示LiDAR传感器在不降低定位精度的情况下可以有多简单,该传感器使用道路和卫星地图来确定汽车的全局位置。对传感器的三个特征进行了评估:范围读数、LiDAR读数的噪声量和帧率,目的是找到LiDAR线的最小数量、可接受的最大噪声和传感器帧率以获得准确的位置估计。该分析是在复杂的田野场景中使用一辆配备有三维激光雷达Velodyne HDL-32E的自主汽车进行的。进行了一些实验,减少了帧的数量,每个三维点云的扫描数量,并人为地增加了15%的射线长度误差。 在其他结果中,我们发现每次扫描只使用4条垂直线,并且人为地增加了15%的射线长度的误差,汽车能够在2.11米的平均误差范围内定位自己。 本文将详细解释所有的实验结果和所采用的方法。
本文的主要贡献如下:
  1.计算颗粒重量施法,卫星和路线图的新技术。新的Tech-Nique实现了[12]中使用的定位精度。
  2.通过降解Realsensor数据来评估方法对传感器的配置进行的扩展性,鲁棒性和限制进行广泛的实验分析。
图2

定位系统

    ~~~          ~~~~     图 2 展示了所提出的定位系统的架构。只要有新的 LiDAR 点云可用,就会更新车辆姿态的估计值。给定点云估计姿态的过程将被称为定位步骤。除了 LiDAR 数据,系统还接收道路地图、卫星地图和汽车里程计(线速度和角速度)作为输入。定位步骤的输出是在获取点云的瞬间对姿态的估计。我们假设车辆在地平面中导航。因此,姿态由三元组(x,y,θ) 表示,其中x 是汽车在地平面中的坐标,θ 是航向角。定位系统依赖于粒子滤波器(PF)[39]。在 PF 中,车辆姿态的概率分布由一组粒子及其相关概率近似。每个粒子代表一个可能的姿势值。初始粒子集是通过采样高斯分布生成的,其均值和协方差矩阵基于 GNSS 传感器提供的估计值;或者,通过手动设置初始汽车姿态。初始化后,PF 不再使用 GNSS 传感器。传统 PF 递归地应用预测步骤,然后是校正步骤。为了同时使用来自卫星图像和路线图的信息,在这项工作中,采用了改进的 PF。修改后的 PF 由预测步骤和两个校正步骤组成。第一次观察应用基于路线图的似然函数。第二个观察依赖于从卫星图像生成的似然函数。 PF 过程结合了 [20] 和 [12] 中提出的方法。在应用预测和两个观察步骤后,可以通过对粒子值进行平均来获得车辆姿态的估计值。用于构建卫星地图和路线图的程序在第 III-D 节中详细描述。
图3

预测步骤中使用的过程模型是基于里程表数据和模板的运动学模型(第三节A)。 在两个观察步骤中的每一个步骤中,粒子的权重被计算和归一化,并对一组新的粒子进行重新采样。归一化包括从所有权重中减去最小权重,然后除以它们的总和。采用了低方差重采样方法[39]。 第一个校正步骤是基于路线图的。 在这个步骤中,如果粒子的假设路径与地图中观察到的道路结构一致,那么它们就会得到较高的权重(第三节B)。在重新取样过程中,部分在有效道路之外的粒子更有可能被丢弃。图3说明了这一过程。在第二个观测步骤(III-C节)中,使用最新的LiDAR点云,为每个粒子建立了一个局部排放网格地图,第一修正步骤产生的粒子集被用作第二修正步骤的输入。图4展示了这些局部地图。该地图是通过使用粒子的姿势将点云中的点投射到地图单元中得到的。 然后将本地地图与卫星地图进行比较,以计算粒子的权重。 在这项工作中使用了可在互联网上下载的卫星地图和路线图。归一化相互信息度量(NMI)被用于比较本地地图和卫星地图,从而为粒子分配权重。 NMI已被成功地应用于许多应用场合,例如,用于医学图像登记[40]。它允许对不同类型的传感器提供的数据进行比较。 NMI被用来评价本地地图和卫星地图之间的匹配程度。本地地图与卫星地图相匹配的粒子获得较高的权重。

运动模型

    ~~~          ~~~~     运动模型负责预测车辆在两个定位步骤之间的运动情况。 由第k个粒子描述的时间et的2D姿势由Xkt=[xt,yt,θt]表示。这个姿态是通过从状态转换分布p(Xkt|Xkt-1,ut)中取样得到的,其中ut是一个控制动作矢量。在这项工作中,ut有两个组成部分,即速度(纵向速度)vt和角速度ωt。姿势Xkt可以通过使用Ackerman运动模型[41]从Xkt-1和ut计算出来,其时间离散版本通过欧拉近似法得到,如下所示。
公式1,2,3
其中Δt是采样时间差
阿克曼运动模型描述了采用阿克曼转向的车辆(如汽车)的运动。在以前的许多工作中,它被用于预测汽车的运动[41], [42]。

基于路线图的校正

    ~~~          ~~~~     在第一校正步骤中,使用最近的车辆路径和路线图逐渐计算的粒子的权重。高权重被分配给其假设象限路径最佳匹配道路段的粒子。格式化,定义粒子的最近路径是使用尾端曲线的突起和运动模型计算的姿势。这种路径将代表姿势的元组(x1,…,xn)。粒子的(非全体化)权重由路径似然函数函数LPATH(在[20]中称为延长可能性)给出:
公式4
这里 Π ( x ∈ m a p ) Π (x∈map) Π(xmap)是一个指标函数,如果posex属于一个路段,其值为1,否则为0。

基于卫星地图的校正

    ~~~          ~~~~     在第二个观测步骤中,粒子的权重是用本地减灾网格图(为了便于阅读,现在简单地称为本地图)和互联网上的卫星图来计算的[18]。 本地地图是用最近的路径(在第三节B中定义)和LiDAR传感器的最后一个点云创建的。 考虑到车辆在连续的定位步骤之间的移动,这些目的被用来将传感器的读数投射到一个网格中。
  点云中的水平扫描不是在同一时间测量的。正因为如此,必须进行适当的处理,以防止由于运动而导致的地图失真。车辆在水平扫描之间的运动是通过死回溯(测距数据和运动模型)来估计的。 运动,以及水平读数之间的时间差很小。 因此,我们假设这些死记硬背的短期估计足够准确。给定一个本地地图和卫星地图,粒子的权重由地图之间的归一化相互信息(NMI)给出。
公式5
  变量hlocal和hm分别代表了由本地地图和卫星地图创建的像素值的标准化直方图。 变量hjoint是由两张地图创建的像素值的联合直方图(也是标准化的)。联合直方图是一个二维矩阵,其中位置(i,j)代表在同一个单元中观察到hlocal的第i个值和hm的第j个值的概率,其熵函数[39]。 具有k个可能值(x1,…,xk)的离散随机变量X的熵由以下公式给出。
公式6
之所以选择NMI作为距离度量,是因为这些地图是用不同原理的传感器创建的,直接比较它们的单元值并不一致。读者可参阅[12]以了解更多细节。

地图创建

    ~~~          ~~~~     卫星地图和道路地图是使用谷歌地图平台的数据建立的[18]。该平台提供了一种方法,可以下载给定的GPS位置(纬度和经度)和其他参数,如所需的分辨率、地图类型等。 因为实验的重点是测试定位算法,所以包含公共地图的数据库是提前下载的,而不是实时多次获取的。 这种预加载过程也可以应用于平台预计在某一区域运行的情况。这种有缓存的方法可以避免重复下载必要的地图,节省带宽和时间资源,并允许系统甚至在没有互联网的地区运行。为了生成包括感兴趣区域的缓存地图(道路和卫星两种类型),一个单独的程序被用来下载图像。图像被保存为最高分辨率,即640×640像素。在这种分辨率下,地图每像素(单元)约为0.29米。下载后,图像被缩放为每像素0.2米。这些版本的地图被储存在缓存系统中。
  下载的图像带有重叠的区域,并使用微软的ICE软件进行拼接。 图5显示了缝合过程后的地图和车辆所走的路径。 道路图是按照[20]中的描述进行分割的,它被表示为一个黑白图像,如果是道路,像素为白色,否则为黑色。

实验

    ~~~          ~~~~     本节介绍了为评估基于卫星和道路地图的定位而进行的实验。 进行了两组实验。 首先,提议的定位的准确性与以前的方法进行了比较。第二,使用不同特征的激光雷达数据进行了几次定位过程;主要方面是与水平和垂直扫描线的数量、测量范围的误差和帧率有关。这些情况是通过降低实际数据(以高分辨率和高帧率获取)、在时间和空间上进行子采样以及添加现实的随机噪声来模拟的。这些降级过程的组合被用来模拟质量较低(和较便宜)的三维激光雷达传感器。用于收集实验数据的模板是IARA自动驾驶汽车(图1)。 IARA是一辆福特Escape混合动力车,由巴西圣埃斯皮里图联邦大学(UFES)的计算实验室(LCAD)自动驾驶。 它有几个高端传感器,包括。 4台立体相机;一个Velodyne LiDAR HDL32-E;一个低成本的GNSS和一个方位参考系统(GNSS/AHRS)Xsens MTiG。低成本的GNSS的定位精度为5米,而Xsens MTiG的定位精度为2.5米,方位均方根误差为2度[43]。 Velodyne HDL32-E是一个三维激光雷达,覆盖360度的方位角和-30.67至10.67度的仰角,分32层。32个读数中的每一个都可以测量到100米,测距精度可达±2厘米。为了比较不同激光雷达的定位精度,应在同一实验中使用多个激光雷达在同一地区收集数据,或在多个实验中重复进行。 然而,环境和平台配置中的非相同条件可能会在比较实验中产生偏差。 为了避免这种情况,使用VelodyneHDL-32E记录了一次数据,并通过对测量结果进行子采样或添加噪声来模拟其他配置(细节在实验描述中介绍),在6.5公里长的路径上收集传感器数据。 图5中的红线代表汽车行驶的路线。实现的最大速度约为50公里/小时。 黑白相间的地图是道路图。其他图像(1-5)是卫星地图的一部分,道路部分或全部被汽车、阴影、树木等所覆盖。 为了生成定位的地面实况,我们按照[5]、[12]中的描述,在两张地图(减灾地图和卫星地图)上手动标注了大约1500个视觉地标(如电线杆、交通灯、拐角),[12]中使用了相同的数据集和地面实况。 每个实验都用不同的种子(用于生成随机数)重复10次,以计算统计数据并验证方法的一致性。 在所有的实验中都使用了以下参数。 粒子的数量被设定为150。 在预测步骤中,线速度v、角速度ω和姿势的位置坐标被扰动,从高斯分布中取样,其平均值和标准偏差分别为0.05m/s、0.05rad/s和0.08m。 为计算NMI度量而建立的直方图(见[12])包含256个桶。姿势被添加到最近的路径上(见第三部分B),直到它覆盖70米的死区。本地地图每个像素有0.2米。这些值经过人工校准,以最大限度地提高定位的准确性。进行的实验有:1) 与以往方法的比较:基于卫星和道路地图的定位的准确性与仅基于卫星地图的定位进行了比较,也与仅基于道路地图的方法进行了比较。 使用这两种地图的方法所达到的精度是实验的基准,在实验中LiDAR数据被子采样并被噪声干扰。
表1

结果和讨论

    ~~~          ~~~~     表一列出了实验的结果。对于每个构型,描述了用于定位的地图和应用于LiDAR数据的约束。缩写HS、VL、FR和N是指水平扫描、垂直线、帧率和噪声。 仅使用卫星地图或仅使用道路地图时实现的定位误差取自以前的工作[20], [44], [45].表I中的实验结果表明,所提出的定位方法可用于估计大规模环境中的车辆定位。考虑两张地图时的定位误差(MAE=0.79m)小于只考虑道路地图(MAE=5.56m)和只考虑卫星地图(MAE=0.89m)的误差。 70%的运行中出现的定位分歧表明,仅使用路线图进行定位是不可靠的。 卫星地图很丰富,当驾驶区域可以观察到时,它们可以进行准确的定位。 然而,在绿树成荫的街道、隧道和其他驾驶区域被遮挡的情况下,定位误差会增加。 在这些情况下,路线图提供了额外的信息来帮助定位并防止偏离真实路径。三个子采样实验表明,正如预期的那样,随着提供给系统的数据量的减少,定位误差也会增加。当水平扫描的数量从100%减少到12%时,误差增长缓慢,最差的情况下MAE为0.84米。 这一结果表明,只考虑12%的水平扫描来估计车辆的定位是可行的。当进一步减少扫描次数时,误差增长得更快,当考虑的扫描次数达到3.1%时,就会出现定位偏差。在对垂直线进行再抽样的实验中没有观察到这种偏差。特别是,当考虑到16条垂直线时,定位误差几乎与基线相同。 因此,根据我们的实验,有16条垂直线的传感器与有32条垂直线的传感器在定位方面一样好。 对帧率进行子采样的实验表明,定位对帧率的降低很敏感。当跳过50%的点云时,MAE比基线大13cm,在将帧率从8Hz降低到4Hz(50%到33%)后,MAE几乎翻了一番。图7显示了不同帧率下的估计姿势。当考虑到33%的点云时,可以观察到与真实路径的分歧,这可以用道路交叉口的低频率修正来解释。卫星和道路图中突出显示了车辆的路径和发生偏离的区域。
  图6展示了定位系统估计的姿势和GNSS系统测量的姿势在不同比例的水平扫描下的比较。 图6c对应于6a中强调的区域,而图6dc对应于图6b中强调的区域。总的来说,估计的路径与GNSS的测量结果接近。 在图6c中可以观察到3.6%配置下的估计位置的跳跃。该区域对应于一个繁忙的交通灯,在卫星地图上有几辆车。 有限的传感器数据和这些异常值(汽车)的存在可以解释这种跳跃。图8a和8b分别显示了使用所有水平扫描和使用该区域3.6%的扫描建立的局部地图之间的比较。请注意,使用3.6%的扫描建立的局部地图中的可见特征数量明显较少。 在图6d中,可以观察到估计路径的高度变化。该区域对应的是一条有树的街道。在卫星图像中,树顶和建筑物覆盖了街道。图8c和图8c比较了使用所有水平扫描和使用3.6%的水平扫描建立的该区域的局部地图。树木和建筑物并没有覆盖街道,而且在两张地图中都几乎没有观察到它们。本地地图和卫星地图之间的这种不一致是对该地区所观察到的定位估计的高变化的潜在解释。在实验中,噪声被添加到范围测量中,表明定位误差随着噪声百分比的增加而增加。对于随机噪声比例为5%的范围,系统能够保持定位追踪,其误差比基线高约10厘米。这一结果证明,总体而言,所提出的方法对某种程度的噪声是稳健的。 根据应用所要求的精度,具有这种噪音量的传感器可以用于定位。在噪声占范围10%的实验中,当考虑到32个和16个垂直读数时,定位系统在一些运行中偏离了真正的路径,导致了高RMSE。在噪声比例为15%的实验中,考虑32、16和8条线时也观察到类似的结果。 有4条垂直线的传感器被成功地用于定位(没有发散),即使加入10%和15%范围的承受偏差的误差。尽管所提出的方法容易受到发散的影响,即使没有引入噪声,人们可以发现,在垂直线数量较多的配置中,位置损失更频繁,这是不言而喻的。一个潜在的解释是,有更多线条的扫描是密集的,这意味着在局部地图的每个单元有更多的噪声。 此外,线越多,出现全长线的概率就越大,这些线就会收到更多的噪声。更加嘈杂的局部地图可能导致不连贯的粒子权重(正确的粒子可能比不正确的粒子获得更低的权重),这可能会造成偏差。 图9比较了应用5%(图9a和9b)和15%(图9c和9d)的高斯噪声后的32和4条垂直线的局部缓解图。可以看出,当考虑更多的垂直线时,局部地图受噪声的影响更大。

结论

    ~~~          ~~~~     这项工作提出了一个新的自主车辆定位系统,该系统基于互联网上的卫星和道路地图。 该系统在一个复杂的大规模环境中使用自动驾驶汽车进行了评估。实验结果表明,使用轻量级的卫星和道路地图来估计车辆的定位是可能的,其MAE为0.79米。这一结果与以前仅基于卫星地图或仅基于道路地图的方法相比是一种改进。进行了广泛的实验评估,目的是确定所提出的方法的局限性和它失败的情况。评估是通过模拟不同的LiDAR配置进行的。 实验结果表明,低成本的传感器可用于定位,其精度几乎与基线传感器相同。他们还表明,所提出的方法对大量的噪声和传感器数据的子采样是稳健的。 在未来的工作中,将使用其他图像注册方法来比较我们的定位结果。此外,共同的地标,如交叉点,将被引入粒子过滤器的校正阶段。此外,我们的系统还将在城市、高速公路、甚至未铺设的道路之间过渡的长通道中进行评估。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值