激光SLAM-重定位方案

现有的激光SLAM重定位方案:

1.FAST_LIO_LOCALIZATION
可以基于Fast-lio构建的地图中进行重定位,初始定位可以通过RVIZ的粗略手动估计来提供,也可以通过其他传感器/算法进行姿态定位。

https://github.com/HViktorTsoi/FAST_LIO_LOCALIZATION

2.LIO-SAM_based_relocalization
可以在构建的地图中重新定位的简单版本的系统,该系统基于LIO-SAM原始版本,不带回环,初始定位也是通过Rviz的粗略手动估计完成。

GitHub - Gaochao-hit/LIO-SAM_based_relocalization: A simple system that can relocalize a robot on a built map is developed in this system. The system is based on LIO-SAM.

3.Livox-Localization

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jiqiang_z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值