GLM4参数解释及模型选择指南

GLM4参数解释及模型选择指南

在这篇文章中,我们将探讨GLM4的参数配置,特别是量化类型,以及如何根据这些参数选择最适合你需求的模型。
在这里插入图片描述

量化类型(Quantization Type)

量化类型决定了模型的量化方法和位数,这直接影响模型在硬件上运行的效率和精度。

  • F16(Full 16-bit float):提供最高精度的完整16位浮点数,但需要较大的内存和计算资源。
  • Q8_0:8位量化,适用于极高精度需求,虽然在大多数情况下不必要,但在特定任务中能提供精度优势。
  • Q6_K 和 Q5_K:6位和5位量化,为主流高质量模型,适合大多数推理任务,能在精度与资源消耗间达到良好平衡。
  • Q4 和 Q3:4位和3位量化,通常用于低内存设备,尽管精度有所下降,但在很多低精度任务中仍适用。
  • IQ(Intelligence Quantization):一种新方法,如IQ4 和 IQ3,通过特定优化在降低精度的同时尽可能减少质量损失,适用于极低内存环境。

量化方法的细分选项

不同的后缀代表不同的优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值