GLM4参数解释及模型选择指南
在这篇文章中,我们将探讨GLM4的参数配置,特别是量化类型,以及如何根据这些参数选择最适合你需求的模型。
量化类型(Quantization Type)
量化类型决定了模型的量化方法和位数,这直接影响模型在硬件上运行的效率和精度。
- F16(Full 16-bit float):提供最高精度的完整16位浮点数,但需要较大的内存和计算资源。
- Q8_0:8位量化,适用于极高精度需求,虽然在大多数情况下不必要,但在特定任务中能提供精度优势。
- Q6_K 和 Q5_K:6位和5位量化,为主流高质量模型,适合大多数推理任务,能在精度与资源消耗间达到良好平衡。
- Q4 和 Q3:4位和3位量化,通常用于低内存设备,尽管精度有所下降,但在很多低精度任务中仍适用。
- IQ(Intelligence Quantization):一种新方法,如IQ4 和 IQ3,通过特定优化在降低精度的同时尽可能减少质量损失,适用于极低内存环境。
量化方法的细分选项
不同的后缀代表不同的优化