无人机博弈:基于深度强化学习在线运动规划的多无人机追逃博弈

文章提出了一种名为TPNet的新型网络,利用LSTM处理时间序列数据进行目标预测,应用于无人机的追逃任务。通过在Unity3d仿真环境中训练,考虑了无人机坠毁和多agent合作的问题。采用了双向LSTM和AC结构,评论员获取全局信息,行动者处理局部信息。实验设定包括二维空间、速度和加速度限制,以及合作与竞争的目标追踪奖励函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

创新点:

1.基于长短期记忆网络LSTM(处理有时间关系的数据)设计了TPNet,实现目标预测,达成先预测后决策的目的。(将预测的思想引入无人机领域)

采用监督学习的方法,训练数据包括:n个时间步长训练数据px(目标位置、agents位置和速度)和k个时间步长标签数据py(目标位置)

2. 使用更逼真的仿真引擎Unity 3d,构建的用于无人机追逃的仿真环境。

3.改进DRL框架,考虑无人机的坠毁问题。(可变数量的agents)

 

 使用bilstm 双向lstm结构来处理信息。采用AC结构,评论员能获取全局信息,行动者只能获取局部信息。

实验假设:

二维平面,无人机飞行在不同高度,不会相撞。

Target的最大速度  大于agent

Target的最大加速度 小于agent

任务目标:2米内5个时间步。

Agents间只合作,与target竞争

奖励函数:

 包括合作奖励和个人奖励。Dis(j,tar)表示智能体j到目标的距离。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值