【无人机】基于强化学习的多无人机移动边缘计算与路径规划研究(Matlab代码实现)

👨‍🎓个人主页:研学社的博客  

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

而在移动边缘计算的非能耗最小化研究中,文献 [36] 的作者通过联合优化计算模式的选择及传输时间分配以最大化 MEC 系统中所有用户计算速率的加权和。该问题的主要困难在于多用户计算模式选择的组合性及传输时间分配的强耦合性。为了解决这个问题,作者提出了一个简单的双截面搜索算法,以获得最优时间分配。文献[37] 研究了结合非正交多址的 MEC 系统中所有用户总计算速率的最大化问题。此外作者还研究了卸载用户采用时分多址作为基准情况下的用户最优分时间分配问题。文献[38]研究了部分卸载和二进制卸载模式下的MEC 系统中的计算效率最大化问题,此外,还阐明了可达到的计算效率与计算比特总数之间的权衡。文献[39] 研究了最小化所有用户间的最大延迟与能耗的加权和。作者通过联合优化卸载决策和计算资源、发射功率和无线电带宽分配来

由于无人机的高机动性以及具有高概率空对地视距通信,最近无人机辅助MEC 系统被大量学者进行了广泛的研究[43-48]。研究方向也主要集中在能耗最小化[49-61]、延迟最小化[62]、任务完成时间最小化[63]、能效最大化[64]及通信吞吐量最大化[65]等。而在能耗最小化的研究中又可分为单无人机辅助 MEC 系统和多无人机辅助 MEC 系统。

📚2 运行结果

 部分代码:

N2=50; %divide matrix into N2*N2 grid when drawing
% TARGET2plot=[0.895,0.898];
TARGET2plot=TARGET/N;

hold on

%% draw obstacles
% E_matrix=Ematrix(N2,enemysUK2plot);
E_matrix = getEmatrix(N2,enemysUK2plot);
[X,Y]=meshgrid(linspace(0,1,N2),linspace(0,1,N2));
contour(X,Y,E_matrix','DisplayName','E');  %draw obstacles' contour line
%% draw TUs
for i=1:size(TU_info,1)
    plot(TU_info(i,1),TU_info(i,2),'ko','Color','r','LineWidth',10,'MarkerSize',TU_info(i,3)*3);
    plot(TU_info(i,1),TU_info(i,2),'+','Color','b','MarkerSize',8,'LineWidth',1.5);
end
%% draw TUs service demand matrix
for i=1:N2
    for j=1:N2
        plot(i/N2,j/N2,'ko','Color','r','LineWidth',1,'MarkerSize',TU_demand_matrix(i,j)+0.0001);
    end
end
xlabel('x');                                                                     
ylabel('y'); 
axis([ 0 1.02 0 1.02]);
set(gcf,'Position',[900 300 450 400]);

%% draw UAVs path
UAV_info = UAV_initialize;
for i=1:UAVnum
    tr=cat(1,UAV_info(i,1:2),traceRecord{i});
    trSize=size(tr,1);
    plot(tr(trSize,1),tr(trSize,2),'ko','LineWidth',1,'MarkerSize',6); %end point
    plot(tr(1,1),tr(1,2),'ko','LineWidth',2,'MarkerSize',10); %start point
    if i==1
        c='r';
    elseif i==2
        c='g';
    else
        c='b';
    end
    plot(tr(:,1),tr(:,2),'Color',c,'LineWidth',2);
    line([0.1 0.15],[0.8-i*0.06 0.8-i*0.06],'Color',c,'LineWidth',2)
    text(0.16,0.8-i*0.06,"UAV"+i); % UAV legend
end
plot(TARGET2plot(1),TARGET2plot(2),'kx','LineWidth',2,'MarkerSize',10); %target point

%% observation radius legend
line([0.1 0.3],[0.9 0.9],'LineWidth',2)
line([0.1 0.1],[0.88 0.92],'LineWidth',2)
line([0.3 0.3],[0.88 0.92],'LineWidth',2)
text(0.11,0.87,'Observation')
text(0.11,0.83,'Radius')

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]徐应杰. 基于地面协同的无人机移动边缘计算系统的研究[D].南昌大学,2022.DOI:10.27232/d.cnki.gnchu.2022.004047.

[2]戴龙斌. 多无人机辅助移动边缘计算的加权能耗最小化研究[D].南昌大学,2022.DOI:10.27232/d.cnki.gnchu.2022.004314.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值