线性代数——理解向(4)

本文深入探讨了线性代数中的核心概念,包括矩阵行列式与体积的关系、特征值和特征向量的定义及性质。通过实例解析了特征值如何反映矩阵的伸缩和旋转效应,并介绍了矩阵对角化的过程及其在计算矩阵幂中的应用。此外,还提及了复数特征值、重特征值以及如何处理它们。内容涵盖矩阵的迹、对称矩阵的特征向量正交性以及退化矩阵的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

麻省理工学院 - MIT - 线性代数(我愿称之为线性代数教程天花板)_哔哩哔哩_bilibili

 MIT—线性代数笔记00 - 知乎 (zhihu.com)

行列式的部分相关性质与知识点这里暂不描述,可看上面给出的知乎笔记

一、行列式与体积之间的关系

矩阵A行列式的绝对值等于以矩阵A行(列)向量为边所构成的平行六面体的体积。行列式的正负对应左手系和右手系。

如果矩阵A是单位矩阵,则其构成的是三个边长均为1且互相垂直的立方体,其体积为1,这与上面的结论相符

而如果矩阵A为正交矩阵Q,则其构成的也是三个边边长为1且三边互相垂直的立方体,其体积也为1只是取向与单位阵不同。这也与上面的结论相符,因为Q^{T}Q=I,且 det(Q)=det(QT) ,所以detQ=1。

交换矩阵A中的行并不会改变其行列式的绝对值,显然也不会改变向量围成的体积,因此这也和体积理论相符。

二、特征值和特征向量

如何通俗地解释特征值与特征向量_哔哩哔哩_bilibili(非常有助理解)

矩阵A完成的是一个向量空间到另一个向量空间的映射,有些向量映射前后在一条直线上,该向量称为特征向量。这里的矩阵A就只起到了伸缩作用,因此可以表示为\lambda,称为特征值;

非零x满足Ax=\lambda x,\lambda就被称为A的特征值,x称为A的对应于特征值\lambda的特征向量;

举例:求A=\begin{bmatrix} -1 & 0\\ 0&1 \end{bmatrix}的特征值,特征向量:

Ax=\lambda x\rightarrow (A-\lambda I)x=0;

如果方程有非零解,那么系数矩阵为奇异矩阵,行列式为零,求出\lambda的值,分别带入方程,求出方程的解

 迹

迹是对角线所有元素的和;

矩阵的迹等于特征值之和;

对称矩阵的特征向量正交;

特征值之积等于行列式;

复数特征值

Q=\begin{bmatrix} 0 &-1 \\ 1& 0 \end{bmatrix}=\begin{bmatrix} cos90^{\circ} & -sin90^{\circ}\\ sin90^{\circ} & cos90^{\circ} \end{bmatrix}是一个90°的旋转矩阵,从矩阵的迹和行列式的值可以得到\lambda _{1}+\lambda _{2}=0,所以两个数一正一负;\lambda _{1}\lambda _{2}=1所以两个数同符号,综上无解。从矩阵的性质可知它的实数特征向量只有零向量,因为其他任何向量乘以旋转矩阵,向量的方向都会发生改变。计算可得:

 可以解得λ1=i 和 λ2=−i 。如果一个矩阵具有复数特征值a+bi则,它的共轭复数a-bi也是矩阵的特征值。实数特征值让特征向量伸缩而虚数让其旋转。

三角阵和重特征值

对于A=\begin{bmatrix} 3 &1 \\ 0 &3 \end{bmatrix}的三角矩阵,特征值就是矩阵对角线上的元素;

 说明A是一个退化矩阵,对应相同的特征值而特征向量短缺;

四、对角化和矩阵的幂

对角化矩阵

如果矩阵A具有n个线性无关的特征向量,将他们作为列向量可以组成一个可逆方阵S,并且有:

 这里的矩阵\wedge为对角阵,他的非零元素就是矩阵A的特征值。因为举证S中的列向量线性无关,因此逆矩阵S^{-1}存在。在等是两侧左乘逆矩阵,得到S^{-1}AS=\wedge,同样A=S\wedge S^{-1}

现在我们得到的是矩阵的”相似标准型“,它还保留来了矩阵操作的基本性质——特征值;

而之前的消元行操作和列操作得到的”相抵标准型“,之神下最内核的秩;

矩阵的幂

如果矩阵A具有n个线性无关的特征向量,如果所有的特征值均满足\left | \lambda _{i} \right |< 1,则k\rightarrow \propto时,A^{k}\rightarrow 0.

重特征值

如果矩阵A没有重特征值,则其一定具有n个线性无关的特征向量。

如果矩阵A有重特征值,它有可能具有n个线性无关的特征向量,也可能没有。比如单位阵的特征值为重特征值1,但是其具有n个线性无关的特征向量。

 差分方程

用斐波那契数列举例:

 为了凑成矩阵形式,列以下方程组:

 令u_{k}=\begin{bmatrix} F_{k+2}\\ F_{k+1} \end{bmatrix},则有u_{k+1}=\begin{bmatrix} 1 & 1\\ 1 & 0 \end{bmatrix}u_{k},观察矩阵A=\begin{bmatrix} 1 &1 \\ 1 & 0 \end{bmatrix}的特征向量和特征值,因为是对称矩阵,特征值为实数,特征向量正交;

 

 求解方程,这里使用小技巧:

(A-\lambda I)x=0\rightarrow \begin{bmatrix} 1-\lambda & 1\\ 1& -\lambda \end{bmatrix}x=0,求非零解,那么左边是奇异矩阵,所以行向量线性相关,用系数矩阵第二行乘以x的结果和第一行相同,而可以一眼第二行乘x=0,x=\begin{bmatrix} \lambda \\ 1 \end{bmatrix}

所以特征向量x1=\begin{bmatrix} \lambda _{1}\\ 1 \end{bmatrix}x2=\begin{bmatrix} \lambda _{2}\\ 1 \end{bmatrix}

这里的特征值反映了数列增长快慢程度;

 后续补充微分方程、马尔科夫矩阵和傅里叶级数;

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小老大MUTA️

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值