【3DGS文献阅读02】/高保真/单目/动态场景 Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene

Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene Reconstruction

1 背景

标题:Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene Reconstruction用于高保真单目动态场景重建的可变形3D高斯模型
作者:Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, Xiaogang Jin
机构:State Key Laboratory of CAD&CG, Zhejiang University;ByteDance Inc.
原文链接:https://arxiv.org/abs/2309.13101
官方代码:https://github.com/ingra14m/Deformable-3D-Gaussians

2 摘要

提出了可变形的三维高斯喷溅方法,在变形场中建模单目动态场景;
引入了退火平滑训练机制(annealing smoothing training,AST),解决相机位姿不准确的问题,无需额外计算开销,对资源进行了有效的利用。

“单目”(Monocular)在计算机视觉中指的是使用一个摄像头或图像源来获取和处理信息。与之相对的是“双目”或多目系统,后者利用两个或多个不同位置的摄像头来模拟人类双眼的立体视觉,从而直接获取深度信息。

退火平滑训练机制
退火:逐渐改变某个参数的过程
平滑:减少波动和不规则性

3 简介

以前用于建模动态场景的方法依赖于网格的表示,但是这种表示有缺陷:
①缺乏细节和真实感
②缺乏语义信息
③难以适应拓扑变化

为了提高nerf的静态场景推理效率,开发了多种加速方法,包括:
①基于网格的结构
②预计算策略

而3dgs这种方法是为表示静态场景而设计的,其高度定制的cuda光栅化管道降低了它的可扩展性。

隐式表示越来越多地用于动态场景建模,但是被证明既低效又无效,表现出的缓慢的收敛速度以及明显的过度拟合性。
许多动态场景都集成了离散结构,如体素网格或平面建模,这种方式提高了训练速度和建模精度。然而挑战依旧存在如下:
①光线投射作为一种渲染方式使得效率低下。
②基于网格的方法依赖于低秩假设,但是动态场景表现出了更高的秩。

在本文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

失舵之舟-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值