雷达学习记录(三)麦克斯韦方程组的复习

博主最近研究生入学开始上课,上了很多电磁场相关的课程,由于本科通信专业没有好好学电磁场,对于最基础的电磁场方程都不会,所以花了一个周末的时间重新学习了电磁场的基础知识,并且整理了麦克斯韦方程组的推导过程。

麦克斯韦方程组作为物理学中最美的方程组,其由四个方程构成,并且这四个方程完美地诠释了电磁里的一切,没错就是一个描述电,一个描述磁,一个描述电生磁,一个描述磁生电,下面我们先介绍一点基础符号和公式再开始介绍麦克斯韦方程组。

基础符号和公式

\vec{A}某个矢量场

\vec{E} 电场强度,V/m

\vec{H} 磁场强度,A/m

\vec{D} 电通量密度,C/m^{^{2}}

\vec{B} 磁通量密度,磁感应强度,Wb/m^{^{2}}=V*S/m^{^{2}}=T

\vec{J} 体电流密度,A/m^{2}

\rho 体电荷密度,C/m^{^{3}}

\triangledown \cdot A 矢量场的散度

\triangledown \times A 矢量场的旋度

散度定理

 \oint \vec{A}d\vec{S}=\int_{V}^{}\triangledown \cdot \vec{A}dV ,矢量场穿过曲面的通量等于散度在曲面围起来的体积上的积分

旋度定理

\oint \vec{A}d\vec{l}=\int_{s}^{}\triangledown \times \vec{A}d\vec{S} ,矢量场在曲线上的环量等于旋度在曲线围起来的面积上的积分

在介绍完了这些基本的公式符号之后,我们开始介绍麦克斯韦方程组的由来。

库仑定律

在中学的时候我们就已经学过了库仑定律,其内容是在空间中的两个点电荷会产生一个静电力,这静电力的大小与点电荷的电荷量成正比

F=\frac{1}{4\pi \varepsilon_{0} r^{2}}q_{1}q_{2}

其中\varepsilon_{0}是真空介电常数

在这里库伦表示出了单个电荷的静电力,但是如果是很多个电荷的叠加呢,或者说是一个不规则的带电体,他的电荷量我们运用微积分的思想可以想成很多个点电荷的叠加,那么由此就引出了电通量的概念

\Phi =\oint \vec{E}d\vec{S}

这是在任意曲面中的电通的表达形式,关于二重积分的计算在这里就不做赘述,如果要求平面的电通那就简单地把电场强度乘以面积就行,不用做积分的计算。

高斯电场定律(方程一)

通过对通量概念的引入,我们就可以理解高斯电场定律的核心内容:通过闭合曲面的电通量跟这个曲面包含的电荷量成正比

\oint \vec{E}d\vec{S}=\frac{q}{\varepsilon_{0} }

通过对于电通密度\vec{D}=\varepsilon_{0} \vec{E},和散度定理,我们可以把高斯电场定律给表达为

\int \triangledown \cdot \vec{D}d\vec{V}=q=\int \rho \vec{V}

\triangledown \cdot \vec{D}=\rho

这样我们就得到了麦克斯韦方程组中第一个方程:从通量的角度来描述电的高斯电场定律。

那第二个方程:描述磁场的方程,是否也可以模仿电通量的描述方法进行描述呢?

高斯磁场定律(方程二)

首先模仿电通量的表达形式表达出磁通量

\Phi =\oint \vec{B}d\vec{S}

同高斯电场定律一样这个公式的意思是通过闭合曲面的磁通量跟这个曲面包含的“磁荷量”成正比,但是这里会出现一个问题,在自然界中有独立存在的正或负电荷,但是却不存在磁单极子,所以磁场线与电场线不同的是磁场线是条闭合的曲线,磁场线的这一性质决定了一个曲面的总磁通量必定为0,这也就是高斯磁场定律的表达形式

\oint \vec{B}d\vec{S}=0

同样的,我们运用散度定理,可以把这个式子改写成:

\oint \vec{B}d\vec{S}=\int \triangledown \cdot \vec{B}d\vec{V}=0

\triangledown \cdot \vec{B}=0

这就是麦克斯韦方程组第二个方程。

法拉第电磁感应定律(方程三)

在高中时候我们学过法拉第做过一个切割磁感线的实验,他发现在金属导体棒在顺着磁感线的方向运动时是不会产生电流的,只有在切割磁感线的时候才会顺利产生电流,随后他进一步扩展了实验,他发现当导体棒不动的时候,增加或者减弱磁场的大小也可以产生电流,由此他总结出了一个结论:只要闭合回路的磁通量发生了改变,就会产生电流。我们想想,磁通量是磁场强度B和面积S的乘积(B·S),切割磁感线其实是相当于改变了磁感线通过回路的面积S,改变磁场强度就是改变了B。不管我是改变了S还是B,它们的乘积B·S(磁通量)肯定都是要改变的

也就是说:只要通过曲面(我们可以把闭合回路当作一个曲面)的磁通量发生了改变,回路中就会产生电流,而且磁通量变化得越快,这个电流就越大。

高中的数学知识又告诉我们,导数可以衡量一个函数的变化率,在大学的时候叫做微分,那么我们就可以用下面这个式子来描述磁通量的变化率

\frac{\partial }{\partial t}\oint \vec{B}d\vec{S}

那按照磁生电的逻辑,磁通量的变化应该会对应着电流的产生,那这个磁通的变化量对应了多少电流呢?

这里我们需要引入一个类似通量的概念,叫做环量,因为我们知道在磁感线的周围会产生一个感生电场,电场线是类似于呼啦圈一样套在了磁感线上,那么绕着一圈的电流量我们就把它叫做电场环量,注意,这是一个闭合曲线

\oint \vec{E}d\vec{l}=-\frac{\partial }{\partial t}\oint \vec{B}d\vec{S}

那为什么会有一个负号呢?这其实是高中学过的楞次定律的内容:线圈中的感应电流产生的感应磁通方向总是阻碍原有磁通的变化,设想一下如果不阻碍的话是不是会导致磁通的无限增大?这是一个不可能的事情。

在这边我们使用旋度定理来改变一下这个式子的形式

\oint \vec{E}d\vec{l}=\int \triangledown \times \vec{E}d\vec{S}=-\oint \frac{\partial \vec{B}}{\partial t}d\vec{S}

\triangledown \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}

这样就是麦克斯韦方程组的第三个方程了

安培-麦克斯韦定理(方程四)

法拉第电磁感应定律告诉我们磁场可以生电,那么最后一步的电生磁的方程如何描述呢?

奥斯特是最早发现电流可以产生磁场的人,他发现了电流的磁效应,随后毕奥,萨伐尔尔安培等人就开始研究电生磁这件事,并有了著名的毕奥-萨伐尔定律

\vec{B}=\int \frac{\mu _{0}}{4\pi }\frac{\vec{I}d\vec{l}\times \vec{r}}{r^{3}} (一定是恒定电流时才成立)

毕奥-萨伐尔定律告诉我们,我们可以算出任何情况下的感生磁场大小,虽然通常会算起来非常麻烦,随后,安培又提出了安培环路定理

\oint \vec{B}d\vec{l}=\mu _{0}\sum I

其中\mu _{0}是真空中的磁导率,安培环路定理的左边跟法拉第定律的左边很相似,因为法拉第定律说磁通量的变化会在它周围产生一个旋转闭合的电场,而电流的磁效应也是在电流的周围产生一个旋转闭合的磁场。我们类比法拉第电磁感应定律中的电场环流(也就是电场在闭合路径的线积分),在这里用磁场环流(磁场在闭合路径的线积分)来描述这种旋转闭合的磁场,而等式的右边,则是真空磁导率乘以闭合路径内的电流总量。

但是到这可能很多人会产生疑问,电生磁难道就是这样一个简单的式子就描述完了吗?安培环路定理里面说的电仅仅只有涉及到电流,但是我们看法拉第的式子,他描述了变化的磁通量会产生感生电场,那么我们是不是可以怀疑变化的电通量也可以产生磁场呢?

这时,麦克斯韦才真正意义上的登场,并且通过一个电容器的实验证明了安培环路定理的不完整,且完善了这个公式,他增加了一项——变化的电通量。

\oint \vec{B}d\vec{l}=\mu _{0} \left ( I+\varepsilon_{0} \int \frac{\partial \vec{E}}{\partial t} d\vec{S}\right )

麦克斯韦添加的后面这部分也被我们称作位移电流假说

I_{d}=\varepsilon \int \frac{\partial \vec{E}}{\partial t}d\vec{S}

最后我们通过旋度定理将这个方程的左边做一个变换,并把B写成\mu_{0} H

\oint \vec{B}d\vec{l}=\int \triangledown \times \vec{B}d\vec{S}=\mu _{0}\int \triangledown \times \vec{H}d\vec{S}

将右边的电流转化成体电流密度I=\int \vec{J}d\vec{S}的形式,电场写成\vec{D}=\varepsilon_{0} \vec{E}的形式

我们就可以得到麦克斯韦方程组的最后一个微分形式,即

\mu _{0}\int \triangledown \times \vec{H}d\vec{S}=\mu _{0}\left ( \int \vec{J}d\vec{S}+\int \frac{\partial \vec{D}}{\partial t} d\vec{S}\right )

化简得\triangledown \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t}

麦克斯韦方程组微分形式

\triangledown \cdot \vec{D}=\rho

\triangledown \cdot \vec{B}=0

\triangledown \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}

\triangledown \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t}

麦克斯韦方程组积分形式

\oint_{s}^{}\vec{D}d\vec{S}=q

\oint_{s}^{}\vec{B}d\vec{S}=0

\oint_{l}^{}\vec{E}d\vec{l}=-\int_{s}^{}\frac{\partial \vec{B}}{\partial t}d\vec{S}

\oint_{l}^{}\vec{H}d\vec{l}=\int_{s}^{}\left ( \vec{J}+\frac{\partial \vec{D}}{\partial t} \right )d\vec{S}

高斯电场定律穿过闭合曲面的电通量正比于这个曲面包含的电荷量

高斯磁场定律穿过闭合曲面的磁通量恒等于0

法拉第电磁感应定律穿过曲面的磁通量的变化率等于感生电场的环流

安培-麦克斯韦定律穿过曲面的电通量的变化率和曲面包含的电流等于感生磁场的环流

麦克斯韦在提出他的成果之后,也提出了电磁波的概念,这也就是后话了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值