无穷级数(4)

本文讲解一些关于数项级数的习题。

1.

 条件收敛是说原级数收敛,但是它的绝对值级数发散,由无穷级数性质2知题中给出的两个级数都发散。

选B

2.

 记

\sum_{n=1}^{\infty }u_{n}=S_{n}, \sum_{n=1}^{\infty }v_{n}=T_{n}, 由已知条件,原级数发散,它肯定不会绝对收敛,因此这两个部分和都无界;故C项级数的部分和肯定无界。

A、B项是根据之前的结论可以判错的,发散级数之和、积敛散性未知,要看具体情况,比如

B,取u_{n} = (-1)^n, v_{n} = \frac{1}{n}, 它们乘积的级数收敛;

A,取u_{n} = (-1)^n, v_{n} = (-1)^{n-1};

D项,取u_{n} = v_{n} = \frac{1}{n}

3.

D项明显正确, 两个收敛级数的和仍收敛。

4. 

A项,未说明是正项级数,不能直接使用正项级数审敛法

B项,取u_{n} = (-1)^n, v_{n} = \frac{1}{n} 

C项,取u_{n} = \frac{1}{n+1}

5.

6.

 我们知道,\sum_{n=1}^{\infty }(-1)^n\frac{1}{n}是收敛的,现在它加上另一个级数仍收敛,那么就要求这个加上的级数必须收敛;而当分子不为零时,这个级数是一个p级数,发散,因此分子必须为零。

7.

 选D。

A、C表示的条件很弱,不足以证明级数收敛;

B的前提是级数是一个正项级数,对于一般的级数而言,应该是其部分和数列收敛;

D项实际上就是柯西收敛原理的表述,正确。

柯西收敛原理表述如下:

8.

此题举反例如同\sum_{n=1}^{\infty }\frac{(-1)^n}{n^p}即可,作为交错级数时,p不为零时,该级数都是收敛的;但是一旦由于加平方、加绝对值等操作让分子变成了1,这就是一个p级数,敛散性根据p来定。

 

应选D。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

midLakePavilion

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值