本文讲解一些关于数项级数的习题。
1.
条件收敛是说原级数收敛,但是它的绝对值级数发散,由无穷级数性质2知题中给出的两个级数都发散。
选B
2.
记
, 由已知条件,原级数发散,它肯定不会绝对收敛,因此这两个部分和都无界;故C项级数的部分和肯定无界。
A、B项是根据之前的结论可以判错的,发散级数之和、积敛散性未知,要看具体情况,比如
B,取, 它们乘积的级数收敛;
A,取;
D项,取
3.
D项明显正确, 两个收敛级数的和仍收敛。
4.
A项,未说明是正项级数,不能直接使用正项级数审敛法
B项,取
C项,取
5.
6.
我们知道,是收敛的,现在它加上另一个级数仍收敛,那么就要求这个加上的级数必须收敛;而当分子不为零时,这个级数是一个p级数,发散,因此分子必须为零。
7.
选D。
A、C表示的条件很弱,不足以证明级数收敛;
B的前提是级数是一个正项级数,对于一般的级数而言,应该是其部分和数列收敛;
D项实际上就是柯西收敛原理的表述,正确。
柯西收敛原理表述如下:
8.
此题举反例如同即可,作为交错级数时,p不为零时,该级数都是收敛的;但是一旦由于加平方、加绝对值等操作让分子变成了1,这就是一个p级数,敛散性根据p来定。
应选D。