ReleaSE:从头设计药物的深度学习方法

本文介绍了一种名为ReleaSE的深度学习方法,用于从头设计药物。该方法结合了生成和预测两个深度神经网络,通过强化学习优化,生成具有特定化学和生物性质的分子。ReleaSE的生成模型使用堆栈增强的记忆网络产生SMILES字符串,而预测模型则预测分子的性质并提供奖励/处罚。通过这种方法,ReleaSE能设计出具有不同物理、生物和化学性质的化合物,如熔点、疏水性和JAK2抑制活性。
摘要由CSDN通过智能技术生成

原文链接

摘要:

本文作者开发了一种用于从头设计药物的深度学习方法ReleaSE(Reinforcement Learning for Structural Evolution)。ReleaSE分别单独训练了两个深度神经网络,作用分别是生成和预测,整合在一起,用于生成新型目标化学分子,并且仅使用化学分子的SMILES字符串作为输入和输出。

生成模型类似于actor,结合了堆栈增强的记忆网络(stack-augmented memory network)产生化学上可使用的SMILES字符串,即产生新的化学分子;预测模型则类似于一个评论家(critic),从生成的分子中获得预期的性质,并对其奖励/处罚(reward/penalty),实现具有目标性质化学物质的从头设计的预测。

第一阶段中,生成和预测模型先通过监督学习算法单独训练,第二阶段中,两个模型联合在一起,结合强化学习(RL)方法训练,以获得具有预期物化/生物性质的分子,一起训练时,生成模型在最大化reward函数的背景下训练。

概念(模型)验证阶段,使用ReLeaSE方法设计了化学文库,包括结构复杂性或具有最大、最小或特定物理性质范围的化合物,如熔点或疏水性,或对Janus蛋白激酶2具有抑制活性的化合物。

1 Introduction

(摘要中对方法的阐释比较详细了,Introduction更倾向于讨论提出该方法的过程)

2 Results

ReleaSE方法包括两个深度神经网络(图1),这里分别称为G模型(Generative)和P模型(Predictive)。

图A和B是G模型(actor)的训练及生成过程。图A:Generative stack-RNN的训练步骤,图B:Generatve stack-RNN的生成步骤。生成模型的输入是来自SMILES数据集字符串的一个字母,输出给定前缀(prefix)的下一个字母的概率向量p_{\Theta }(a_{t}|s_{t-1}),参数\Theta的优化通过最小化交叉熵(cross-entropy)损失函数实现。p_{\Theta }(a_{t}|s_{t-1})的随机采样产生a_{t}

In the generator regime(没看懂regime,这里先摆个原文), the input token is a previously generated character.

图C和图D分别是总流程以及P模型(critic)的流程。图D:P模型将一个SMILES字符串作为输入,将化学分子性质作为一个数字输出,参数优化使用I_{2}-平方损失函数最小化。

注意:rewards是由P模型数值化的化学分子性质的函数,G模型训练目标是最大化预期rewards。

2.1 RL formulation as applied to chemical library design

本章介绍如何使用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值